Correct. The probability is \(\begin{bmatrix}8 \\6 \end{bmatrix} \)0.66(1-0.6)2 = \(\dfrac{8\,x\, 7\, x\, 6\, x\, 5\, x\, 4\, x\, 3\, x\, 2\, x\, 1}{6\, x\, 5\, x\, 4\, x\, 3\, x\, 2\, x\, 1(2\, x\, 1)}\,0.6(0.4) \)2. Note that 6\,x\,5\,x\,4\,x\,3\,x\,2\,x\,1 cancels from the numerator and denominator and the leftover 2 in the denominator cancels with the 8 to leave 4.
Incorrect. The probability is \(\begin{bmatrix}8 \\6 \end{bmatrix} \)0.66(1-0.6)2 = \(\dfrac{8 \,x \,7 \,x \,6 \,x \,5 \,x \,4 \,x \,3 \,x \,2 \,x \,1}{6 \,x \,5 \,x \,4 \,x \,3 \,x \,2 \,x \,1(2 \,x \,1)}\,0.6(0.4) \)2. Note that 6x5x4x3x2x1 cancels from the numerator and denominator and the leftover 2 in the denominator cancels with the 8 to leave 4.
2
Try again.