(a) Find the position \(\mathbf{r}=\mathbf{r}( t)\) of a particle that moves counterclockwise along a circle of radius \(R\) with a constant speed \(v_{0}\).
(b) Find the velocity and acceleration of the particle.
(c) Find the magnitude of the acceleration.
(a) The particle is moving counterclockwise along the circle, as shown in Figure 28. If \(\theta (t)\) is the angle between the positive \(x\)-axis and the position vector of the particle \(\mathbf{r}=\) \(\mathbf{r}(t)\), then the vector \(\mathbf{r=r}( t) \) is \begin{equation*} \mathbf{r}(t)=R \cos [\theta (t)]{\bf i}+R\;\sin [\theta (t)]{\bf j}\tag{1} \end{equation*}
787
Notice that \(\mathbf{r}( 0)\;=\;R\mathbf{i,}\) as required. Also for the motion to be counterclockwise, the function \(\theta\;=\;\theta ( t) \) must be increasing.
(b) The velocity \(\mathbf{v}\) of the particle is \begin{equation*} \mathbf{v}(t)=\frac{d\mathbf{r}}{dt}=-R\;\sin [\theta (t)]\frac{d\theta }{dt} \mathbf{i}+R\;\cos [\theta (t)]\frac{d\theta }{dt}\mathbf{j}\qquad \color{#0066A7}{\hbox{Use the Chain Rule.}} \end{equation*}
and the speed \(v\) of the particle is \begin{eqnarray*} v(t)&=&\left\Vert \mathbf{v}(t)\right\Vert\;=\;\sqrt{R^{2}\sin ^{2}[\theta (t)]\left( \frac{ d\theta }{dt}\right) ^{2}+R^{2}\cos ^{2}[\theta (t)]\left( \frac{d\theta }{dt} \right) ^{2}}\\[6pt] &=&\sqrt{R^{2}\!\left( \frac{d\theta }{dt}\right) ^{2}}=R\left\vert \frac{d\theta }{dt}\right\vert \end{eqnarray*}
Since we know the speed is constant, \(v(t)=v_{0}\). Also, since the function \(\theta\;=\;\theta ( t) \) is increasing, \(\dfrac{d\theta }{dt}>0\). As a result, \begin{eqnarray*} v_{0}&=&R\frac{d\theta }{dt} \\[4pt] \frac{d\theta }{dt}&=&\frac{v_{0}}{R} \end{eqnarray*}
Since \(\dfrac{d\theta }{dt}\) is the rate at which the angle \(\theta \) is changing, the quantity \(\dfrac{v_{0}}{R}\) is the angular speed \(\omega \) of the particle. That is, \begin{equation*} \frac{d\theta }{dt}=\omega \end{equation*}
We solve this differential equation, using \(\theta ( 0)\;=\;0\) as the initial condition. \begin{eqnarray*} d\theta &=&\omega dt \\[3pt] \theta ( t) &=&\omega t+k \\[3pt] \theta ( 0) &=&k=0 \end{eqnarray*}
So, \(\theta (t)=\omega t\). Now substitute \(\theta (t)=\omega t\) into the vector function \(\mathbf{r=r}( t)\) [statement (1)] to obtain \begin{equation*} \mathbf{r}(t)=R\;\cos ( \omega t) \mathbf{i}+R\;\sin ( \omega t) \mathbf{j} \end{equation*}
Then the velocity \(\mathbf{v}\) and acceleration \(\mathbf{a}\) of the particle are \begin{eqnarray*} \mathbf{v}\;=\;\mathbf{v}(t) &=& -R\omega \sin ( \omega t) \mathbf{i} +R\omega \cos ( \omega t) \mathbf{j} \\[3pt] \mathbf{a}\;=\;\mathbf{a}(t) &=& -R\omega ^{2}\cos ( \omega t) \mathbf{i }-R\omega ^{2}\sin ( \omega t) \mathbf{j}=-\omega ^{2}\left[ R\;\cos ( \omega t) \mathbf{i}+R\;\sin ( \omega t) \mathbf{ j}\right]\\[3pt] &=&-\omega ^{2}\mathbf{r}(t) \end{eqnarray*}
(c) Since \(\omega=\dfrac{v_{0}}{R}\), the magnitude of the acceleration is \begin{equation*} \boxed {\left\Vert \mathbf{a}(t)\right\Vert\;=\;\omega ^{2}\left\Vert \mathbf{r}(t)\right\Vert\;=\;\omega ^{2}R=\dfrac{v_{0}^{2}}{R}}\tag{2} \end{equation*}