Let z=x2y−y2x, where x=sint and y=et. Find dzdt.
Then we use Chain Rule I to find dzdt. dzdt=↑Chain Rule I∂z∂xdxdt+∂z∂ydydt=(2xy−y2)(cost)+(x2−2xy)(et)
Since z is a function of t, we express dzdt in terms of t. dzdt=(2etsint−e2t)(cost)+(sin2t−2etsint)(et)x=sint,y=et=et[sin(2t)−etcost+sin2t−2etsint]2sintcost=sin(2t)