Loading [MathJax]/jax/output/CommonHTML/jax.js

Let z=x2yy2x, where x=sint and y=et. Find dzdt.

Solution We begin by finding the partial derivatives of z, zx and zy, and the derivatives dxdt and dydt. zx=2xyy2zy=x22xydxdt=costdydt=et

Then we use Chain Rule I to find dzdt. dzdt=Chain Rule Izxdxdt+zydydt=(2xyy2)(cost)+(x22xy)(et)

Since z is a function of t, we express dzdt in terms of t. dzdt=(2etsinte2t)(cost)+(sin2t2etsint)(et)x=sint,y=et=et[sin(2t)etcost+sin2t2etsint]2sintcost=sin(2t)