Processing math: 100%

Let z=exsiny, where x=et and y=π3et. Find dzdt when t=0.

Solution We begin by finding the partial derivatives of z, zx and zy, and the derivatives dxdt and dydt. zx=exsinyzy=excosydxdt=etdydt=π3et

Then we use Chain Rule I to find dzdt. dzdt=Chain Rule Izxdxdt+zydydt=(exsiny)et+(excosy)(π3et)

We can stop here and evaluate dzdt. When t=0, then x=e0=1 and y=π3e0=π3. So, when t=0, dzdt=(esinπ3)(1)+(ecosπ3)(π3)=e32πe6=e6(33π)