Let z=exsiny, where x=et and y=π3e−t. Find dzdt when t=0.
Then we use Chain Rule I to find dzdt. dzdt=↑Chain Rule I∂z∂xdxdt+∂z∂ydydt=(exsiny)et+(excosy)(−π3e−t)
We can stop here and evaluate dzdt. When t=0, then x=e0=1 and y=π3e0=π3. So, when t=0, dzdt=(esinπ3)(1)+(ecosπ3)(−π3)=e√32−πe6=e6(3√3−π)