Find each limit:
(b) Since \(\lim\limits_{(x, y)\rightarrow (1, 2)} (x^2+y^2) = \lim\limits_{x\rightarrow 1} x^2 + \lim\limits_{y\rightarrow 2} y^2 =5\neq 0\), we use the limit of a quotient: \[ \begin{eqnarray*} \lim_{(x, y)\rightarrow (1, 2)}\frac{xy}{x^{2}+y^{2}} &=&\frac{ \lim\limits_{(x, y)\rightarrow (1, 2)}(xy) }{\lim\limits_{(x, y) \rightarrow (1, 2)}(x^{2}+y^{2})} =\frac{\Big( \lim\limits_{x\rightarrow 1}x\Big) \Big( \lim\limits_{y\rightarrow 2}y\Big) }{\lim\limits_{x\rightarrow 1}x^{2}+\lim\limits_{y\rightarrow 2}y^{2}}=\frac{1\cdot 2}{1+4}=\frac{2}{5} \end{eqnarray*} \]
(c) Look at the denominator. Since \(\lim\limits_{(x, y) \rightarrow (3,-1)}( x^{2}+9y^{2}) =18,\) we can use the limit of a quotient property. Then \[ \begin{eqnarray*} \lim\limits_{(x, y)\rightarrow (3,-1)}\dfrac{x^{2}+2xy-3y^{2}}{x^{2}+9y^{2}} &=&\dfrac{\lim\limits_{(x, y)\rightarrow (3,-1)}(x^{2} + 2xy - 3y^{2}) }{\lim\limits_{(x, y)\rightarrow (3,-1)}(x^{2} + 9y^{2}) }\\[8pt] &=&\frac{\lim\limits_{x\rightarrow 3}x^{2} + 2\Big( \lim\limits_{x\rightarrow 3}x\Big) \Big( \lim\limits_{y\rightarrow -1}y\Big) - 3 \lim\limits_{y\rightarrow -1}y^{2}}{18}\\[8pt] &=&\dfrac{9 + 2(3)(-1) - 3(1)}{18}=0 \end{eqnarray*} \]