Find ∂f∂u, ∂f∂v, ∂f∂w, ∂f∂t for the function f(x,y,z)=x2+y2+z2, where x=uvwt, y=eu+v+w+t, and z=u+2v+3w+4t.
Solution We use an extension of Chain Rule II. ∂f∂u=∂f∂x∂x∂u+∂f∂y∂y∂u+∂f∂z∂z∂u∂f∂v=∂f∂x∂x∂v+∂f∂y∂y∂v+∂f∂z∂z∂v=(2x)(vwt)+(2y)(eu+v+w+t)+(2z)(1)=(2x)(uwt)+(2y)(eu+v+w+t)+(2z)(2)=2uv2w2t2+2e2(u+v+w+t)+2(u+2v+3w+4t)=2u2vw2t2+2e2(u+v+w+t)+4(u+2v+3w+4t)∂f∂w=∂f∂x∂x∂w+∂f∂y∂y∂w+∂f∂z∂z∂w∂f∂t=∂f∂x∂x∂t+∂f∂y∂y∂t+∂f∂z∂z∂t=(2x)(uvt)+(2y)(eu+v+w+t)+(2z)(3)=(2x)(uvw)+(2y)(eu+v+w+t)+(2z)(4)=2u2v2wt2+2e2(u+v+w+t)+6(u+2v+3w+4t)=2u2v2w2t+2e2(u+v+w+t)+8(u+2v+3w+4t)
Again, notice that the partial derivatives of f in Example 5 are expressed in terms of u,v,w, and t alone.