Loading [MathJax]/jax/output/CommonHTML/jax.js

Find fu, fv, fw, ft for the function f(x,y,z)=x2+y2+z2, where x=uvwt, y=eu+v+w+t, and z=u+2v+3w+4t.

Solution We use an extension of Chain Rule II. fu=fxxu+fyyu+fzzufv=fxxv+fyyv+fzzv=(2x)(vwt)+(2y)(eu+v+w+t)+(2z)(1)=(2x)(uwt)+(2y)(eu+v+w+t)+(2z)(2)=2uv2w2t2+2e2(u+v+w+t)+2(u+2v+3w+4t)=2u2vw2t2+2e2(u+v+w+t)+4(u+2v+3w+4t)fw=fxxw+fyyw+fzzwft=fxxt+fyyt+fzzt=(2x)(uvt)+(2y)(eu+v+w+t)+(2z)(3)=(2x)(uvw)+(2y)(eu+v+w+t)+(2z)(4)=2u2v2wt2+2e2(u+v+w+t)+6(u+2v+3w+4t)=2u2v2w2t+2e2(u+v+w+t)+8(u+2v+3w+4t)

Again, notice that the partial derivatives of f in Example 5 are expressed in terms of u,v,w, and t alone.