Find ∂z∂x and ∂z∂y if z=f(x,y) is defined implicitly by the function F(x,y,z)=x2z2+y2−z2+6yz−10=0.
Solution First we find the partial derivatives of F. Fx=∂F∂x=2xz2Fy=∂F∂y=2y+6zFz=∂F∂z=2x2z−2z+6y
Then we use (4). If Fz=2x2z−2z+6y≠0, ∂z∂x=−2xz22x2z−2z+6y=−xz2x2z−z+3y
and ∂z∂y=−2y+6z2x2z−2z+6y=−y+3zx2z−z+3y