Processing math: 100%

Let p=f(vw,vu,uw) be a differentiable function. Show that pu+pv+pw=0

Solution Let x=vw, y=vu, and z=uw. Then p=f(x,y,z). We use an extension of Chain Rule II. Since xu=0, yu=1, and zu=1, we have pu=pxxu+pyyu+pzzu=px(0)+py(1)+pz(1)=py+pz 

856

Since xv=1, yv=1, and zv=0, we have pv=pxxv+pyyv+pzzv=px(1)+py(1)+pz(0)=px+py

Since xw=1, yw=0, and zw=1, we have pw=pxxw+pyyw+pzzw=px(1)+py(0)+pz(1)=pxpz

Adding these, we get pu+pv+pw=(py+pz) pu+(px+py)pv+(pxpz)pw=0