Find \(\dfrac{\partial z}{\partial x}\) and \(\dfrac{\partial z}{\partial y}\) if \(z=f(x,y) \) is defined implicitly by the function \[ F(x,y,z)=x^{2}z^{2}+y^{2}-z^{2}+6yz-10=0. \]
Then we use (4). If \(F_{z}=2x^{2}z-2z+6y\neq 0\), \[ \dfrac{\partial z}{\partial x}=-\dfrac{2xz^{2}}{2x^{2}z-2z+6y}=-\dfrac{ xz^{2}}{x^{2}z-z+3y} \]
and \[ \dfrac{\partial z}{\partial y}=-\dfrac{2y+6z}{ 2x^{2}z-2z+6y}=-\dfrac{y+3z}{x^{2}z-z+3y} \]