Find the absolute maximum and the absolute minimum of \[ \begin{equation*} z=f( x,y) =x^{2}+y^{2}-2x+2y-5 \end{equation*} \]
whose domain is the disk \(x^{2}+y^{2}\leq 9\).
The only solution is \(x=1,\) \(y=-1,\) which is an interior point of the domain of \(f.\) The value of \(f\) at the critical point is \(f(1,-1) =-7\).
The boundary of the domain of \(f\) is the circle \(x^{2}+y^{2}=9.\) We express the boundary using the parametric equations \(x=x(t) =3\,\cos t\), \(y=y(t) =3\,\sin t,\) \(0\leq t\leq 2\pi .\) Next we evaluate \(f\) on its boundary. \[ \begin{eqnarray*} z=f( x,y) &=&f( 3\,\cos t,3\,\sin t)\\[4pt] &=&9\,\cos ^{2}t+9\,\sin^{2}t-6\,\cos t+6\,\sin t-5\\[4pt] &=&4-6\,\cos t+6\,\sin t \end{eqnarray*} \]
Now we find where \(\dfrac{dz}{dt}=0\). \[ \begin{eqnarray*} \dfrac{dz}{dt}&= & 6\,\sin t+6\,\cos t=0 \\[4pt] \tan t&=&-1 \\[4pt] t&=&\dfrac{3\pi }{4}\qquad\hbox{or}\qquad t=\dfrac{7\pi }{4} \end{eqnarray*} \]
At \(t=\dfrac{3\pi }{4},\) the value of \(f\) is \[ \begin{eqnarray*} f\left( 3\,\cos \dfrac{3\pi }{4},3\,\sin \dfrac{3\pi }{4}\right) &=&4-6\,\cos \dfrac{ 3\pi }{4}+6\,\sin \dfrac{3\pi }{4}=4-6\left( -\dfrac{\sqrt{2}}{2}\right) +6\left( \dfrac{\sqrt{2}}{2}\right)\\[4pt] &=&4+6\sqrt{2} \end{eqnarray*} \]
At \(t=\dfrac{7\pi }{4},\) the value of \(f\) is \[ \begin{eqnarray*} f\left( 3\,\cos \dfrac{7\pi }{4},3\,\sin \dfrac{7\pi }{4}\right) &=&4-6\,\cos \dfrac{ 7\pi }{4}+6\,\sin \dfrac{7\pi }{4}=4-6\left( \dfrac{\sqrt{2}}{2}\right) +6\left( -\dfrac{\sqrt{2}}{2}\right)\\[4pt] &=&4-6\sqrt{2} \end{eqnarray*} \]
886
The absolute maximum value of \(f\) is \(4+6\sqrt{2}\approx 12. 485;\) the absolute minimum value of \(f\) is \(-7.\)