Find the mass and center of mass of a lamina in the shape of an isosceles right triangle. The mass density function \(\rho =\rho (x,y) \) is directly proportional to the square of the distance from the vertex at the right angle.
Since the distance of a point \((x,y) \) from the origin is \(\sqrt{ x^{2}+y^{2}},\) the mass density of the lamina is \[ \rho (x,y)=k(x^{2}+y^{2}) \]
where \(k\) is the constant of proportionality. Since \(\rho =\rho (x,y)\) is continuous on \(R,\) the mass \(M\) of this lamina is given by a double integral. \[ \begin{eqnarray*} M& =&\displaystyle\iint\limits_{\kern-3ptR}\rho (x,y)\,{\it dA}=\displaystyle\iint\limits_{\kern-3ptR}k(x^{2}+y^{2})\,d\!A=k\int_{0}^{a} \int_{0}^{a-x}(x^{2}+y^{2})\,{\it dy}\,{\it dx}\\[4pt] &=&k\int_{0}^{a}\left[ \left( x^{2}y+\dfrac{ y^{3}}{3}\right) \right] _{0}^{a-x}{\it dx} = k\int^a_0 \left[x^2a -x^3+\dfrac{(a-x)^3}{3}\right] {\it dx}\\[4pt] & =& k\int_{0}^{a}\dfrac{1}{3}(a^{3}-3a^{2}x+6ax^{2}-4x^{3})\,{\it dx} =\dfrac{k}{3} \left[a^3x-3a^2 \dfrac{x^2}{2} +2ax^3 -x^4\right]^a_0\\[4pt] &=&\dfrac{k}{3}\left( a^{4}-\dfrac{3a^{4}}{2}+2a^{4}-a^{4}\right) =\dfrac{ka^{4}}{6} \end{eqnarray*} \]
Due to the symmetry of both the region \(R\) and the mass density, the center of mass \((\bar{x},\bar{y})\) lies on the line \(y=x\). So, once we find \(\bar{ x}\), we also know \(\bar{y}\). The moment of mass with respect to the \(y\)-axis, \(M_{y}\), is \[ \begin{eqnarray*} M_{y}& =& \displaystyle\iint\limits_{\kern-3ptR}x\rho (x,y)\,{\it dA}=\displaystyle\iint\limits_{\kern-3ptR}xk(x^{2}+y^{2})\,d\!A=k\int_{0}^{a} \int_{0}^{a-x}(x^{3}+xy^{2})\,{\it dy}\,{\it dx} \\[4pt] & =&\dfrac{k}{3}\int_{0}^{a}(a^{3}x-3a^{2}x^{2}+6ax^{3}-4x^{4})\,{\it dx}=\dfrac{ka^{5}}{15} \end{eqnarray*} \]
932
The center of mass \((\bar{x},\bar{y})\) is: \[ \bar{x}=\dfrac{M_{y}}{M}=\dfrac{\dfrac{ka^{5}}{15}}{\dfrac{ka^{4}}{6}}=\dfrac{2}{5}a=\overline{y} \]
The center of mass of the lamina is the point \(\left( \dfrac{2}{5}a,\dfrac{2}{5}a\right) \).