Processing math: 68%

Find the volume V under the paraboloid z=f(x,y)=4x2y2 and over the rectangular region R defined by 1x1 and 0y1.

Solution We begin by graphing z=f(x,y) and the rectangular region R, as shown in Figure 7.

Since z=f(x,y) is continuous and z0 over the rectangular region 1x1, 0y1 , the volume V under the surface z=f(x,y) is given by V=

Using Fubini’s Theorem, we have \begin{eqnarray*} V& =&\int_{-1}^{1}\left[ \int_{0}^{1}(4-x^{2}-y^{2})\,{\it dy}\right]\! {\it dx}=\int_{-1}^{1}\left[ 4y-x^{2}y-\dfrac{y^{3}}{3}\right]_{0}^{1}\,{\it dx}\\[4pt] &=&\int_{-1}^{1}\left( 4-x^{2}-\dfrac{1}{3}\right)\!{\it dx}=\int_{-1}^{1}\left( \dfrac{11}{3}-x^{2}\right)\!{\it dx}=\left[ \dfrac{11}{3}x-\dfrac{x^{3}}{3}\right] _{-1}^{1}\\[4pt] &=&\left( \dfrac{11}{3}-\dfrac{1}{3}\right) -\left( -\dfrac{11}{3}+\dfrac{1}{3}\right) =\dfrac{20}{3}\hbox{ cubic units} \end{eqnarray*}

z=f(x,y)=4-x^{2}-y^{2}, -1\leq x\leq 1, 0\leq y\leq 1

Example 5 by finding \int_{0}^{1}\left[ \int_{-1}^{1}(4-x^{2}-y^{2})\,{\it dx}\right] \! {\it dy}.

Problem 61.