A fluid has constant mass density ρ. Find the mass per unit time of fluid flowing across the cube enclosed by the planes x=0, x=1, y=0, y=1, z=0, and z=1 in the direction of the outer unit normal vectors if the velocity of the fluid at any point on the cube is F=F(x,y,z)=4xzi−y2j+yzk. That is, find the flux of F across the cube.
We decompose S into its six faces and find the surface integral over each one, as shown in Table 1.
Face | \mathbf{n} | \mathbf{F} | {\bf F} \,{\cdot}\, {\bf n} | \rho \iint\limits_{\kern-8ptS}\mathbf{F}\,{\cdot}\, \mathbf{n}\,dS | |
---|---|---|---|---|---|
S_{1}={\it ABCO} | z=0 | -\mathbf{k} | -y^{2}\mathbf{j} | 0 | 0 |
S_{2}={\it OAEG} | y=0 | -\mathbf{j} | 4xz\mathbf{i} | 0 | 0 |
S_{3}={\it OCDG} | x=0 | -\mathbf{i} | -y^{2}\mathbf{j}+yz\mathbf{k} | 0 | 0 |
S_{4}={\it ABFE} | x=1 | \mathbf{i} | 4z\mathbf{i}-y^{2}\mathbf{j}+yz\mathbf{k} | 4z | \rho \int_{0}^{1}\int_{0}^{1}4z\,dy\,dz=2\rho |
S_{5}={\it BCDF} | y=1 | \mathbf{j} | 4xz\mathbf{i}-\mathbf{j}+z\mathbf{k} | -1 | -\rho \int_{0}^{1}\int_{0}^{1}\,dx\,dz=-\rho |
S_{6}={\it DFEG} | z=1 | \mathbf{k} | 4x\mathbf{i}-y^{2}\mathbf{j}+y\mathbf{k} | y | \rho\int_{0}^{1}\int_{0}^{1}y\,dx\,dy=\dfrac{1}{2}\rho |
The mass per unit time of fluid flowing across the cube is 0+0+0+2\rho -\rho +\dfrac{1}{2}\rho = \dfrac{3}{2}\rho