A parachuter and his parachute together weigh \(192 {\rm lb}\). At the instant the parachute opens, he is falling at 150 feet per second (ft/s). Suppose the air resistance exerts a force of 200 lb when the parachuter’s speed is 20 ft/s.
Remember that with falling objects, the positive direction is up, so \(v_0 = v(0) =-150\;\rm{ft}/\!\rm{s}\).
Since the air resistance is \(200\;\rm{lb}\) when the speed is \(20\;\rm{ft}/\rm{s}\), \[ \begin{eqnarray*} 200& =&k\cdot 20\qquad\color{#0066A7}{{F=kv}; \hbox{force is proportional to speed.}} \\ k& =&10 \end{eqnarray*} \]
From (3), the velocity of the parachuter at time \(t\) after the parachute opens is \[ \begin{eqnarray*} v(t) &=&-\frac{mg}{k}+\left( v_{0}+\frac{mg}{k}\right) e^{{{-kt/m}}} \\ v(t) &=&-\frac{192}{10}+\left( -150+\frac{192}{10}\right) e^{{{-10t/6}}}\qquad\color{#0066A7}{{v}_{0}=-150; mg=192; g=32; k=10.} \\ v(t) &=&-19.2-130.8e^{{{-5t/3}}} \end{eqnarray*} \]
1081
After \(3\) seconds, the parachuter’s velocity is \[ \begin{equation*} v(3)=-19.2-130.8e^{-5}\approx -20.081\;\rm{ft}/\!\rm{s} (13.692 \;\rm{mi}/\!\rm{h}) \end{equation*} \]
(b) The limiting velocity is \(\lim\limits_{t\rightarrow \infty }v(t)=-\dfrac{mg}{k}=-19.2\;\rm{ft}/\rm{s} (13.091\;\rm{mi}/\rm{h} )\).