Processing math: 7%

Use the ϵ-δ definition of a limit to prove that:

  • lim, where A and c are real numbers
  • \lim\limits_{x\rightarrow c}x=c, where c is a real number
  • Solution

    (a) f(x)=A is the constant function whose graph is a horizontal line. Given any \epsilon >0, we must find \delta >0 so that whenever 0 \lt \vert x-c\vert \lt \delta , then \left\vert f(x)-A\right\vert \lt \epsilon .

    Since \left\vert A-A\right\vert =0, then \left\vert f(x)-A\right\vert \lt \epsilon no matter what positive number \delta is used. That is, any choice of \delta guarantees that whenever 0 \lt \vert x-c\vert \lt \delta , then \left\vert f(x)-A\right\vert \lt \epsilon .

    (b) f( x) =x is the identity function. Given any \epsilon >0, we must find \delta so that whenever 0 \lt \vert x-c\vert \lt \delta , then \vert f(x)-c \vert =\vert x-c\vert \lt \epsilon . The easiest choice is to make \delta =\epsilon . That is, whenever 0 \lt \vert x-c\vert \lt \delta =\epsilon , then \vert f(x)-c \vert \underset{\underset{\color{#0066A7}{f( x) =x}}{\color{#0066A7}{\uparrow}}}{=} \vert x-c\vert \lt \epsilon .