Investigate lim using a table of numbers.
We create Table 3, by investigating one-sided limits of \dfrac{\sin x}{x} as x approaches 0, choosing numbers (in radians) slightly less than 0 and numbers slightly greater than 0.
\underrightarrow{x~\hbox{approaches 0 from the left}} | \underleftarrow{x~\hbox{approaches 0 from the right}} | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x (in radians) | -0.02 | -0.01 | 0.005 | \rightarrow | 0 | \leftarrow | 0.005 | 0.01 | 0.02 | ||
f(x) =\dfrac{\sin x}{x} | 0.99993 | 0.99998 | 0.999996 | f(x) approaches 1 | 0.999996 | 0.99998 | 0.99993 |
{f(x)=}\dfrac{\sin {x}}{{x}} is an even function, so the bottom row of Table 3 is symmetric about x=0.
Table 3 suggests that \lim\limits_{x\rightarrow 0^{-}}f(x)=1 and \lim\limits_{x\rightarrow 0^{+}}f(x)=1. This suggests that \lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x}=1.