Processing math: 4%

The Dirichlet function is defined by f(x)={1if x is rational0if x is irrational.

Prove lim f( x) does not exist for any c.

Solution We use a proof by contradiction. That is, we assume that \lim\limits_{x\rightarrow c} f(x) exists and show that this leads to a contradiction.

136

Assume \lim\limits_{x\rightarrow c}f(x)=L for some number c. Now if we are given \epsilon =\dfrac{1}{2} (or any smaller positive number), then there is a positive number \delta , so that \begin{equation*} \hbox{whenever }\quad 0\lt\vert x-c\vert \lt\delta\qquad \hbox{ then }\quad \vert f( x) -L \vert \lt\dfrac{1}{2} \end{equation*}

Suppose x_{1} is a rational number satisfying 0\lt \vert x_{1}-c\vert \lt\delta , and x_{2} is an irrational number satisfying 0\lt\vert x_{2}-c \vert \lt\delta . Then from the definition of the function f, \begin{equation*} f (x_{1}) =1\qquad \hbox{and}\qquad f( x_{2}) =0 \end{equation*}

Using these values in the inequality \vert f(x)-L\vert \lt\epsilon , we get \begin{equation*} \begin{array}[t]{rcl} \vert f(x_{1})-L\vert &=&\vert 1-L\vert \lt\dfrac{1}{2}\\[5pt] -\dfrac{1}{2}&\lt&1-L\lt\dfrac{1}{2} \\[5pt] -\dfrac{3}{2}&\lt&-L\lt-\dfrac{1}{2} \\[5pt] \dfrac{1}{2}&\lt&L\lt\dfrac{3}{2} \end{array} \quad \hbox{ and }\quad \begin{array}[t]{rcl} \vert f(x_{2})-L\vert &=& \vert 0-L\vert \lt\dfrac{1}{2} \\[5pt] -\dfrac{1}{2}&\lt&-L\lt\dfrac{1}{2} \\[5pt] \dfrac{1}{2}&\gt&L\gt-\dfrac{1}{2} \\[5pt] -\dfrac{1}{2}&\lt&L\lt\dfrac{1}{2} \end{array} \end{equation*}

From the left inequality, we have L\gt\dfrac{1}{2}, and from the right inequality, we have L\lt\dfrac{1}{2}. Since it is impossible for both inequalities to be satisfied, we conclude that \lim\limits_{x\rightarrow c}f(x) does not exist.