Find \(\lim\limits_{x\rightarrow -2}\dfrac{x^{2}+5x+6}{x^{2}-4}\).
Since \(x\neq -2\), and we are interested in the limit as \(x\) approaches \(-2\), the factor \(x+2\) can be divided out. Then \[ \begin{eqnarray*} \lim_{x\rightarrow -2}\frac{x^{2}+5x+6}{x^{2}-4}\underset{\underset{\color{#0066A7}{\hbox{Factor}}}{\color{#0066A7}{\uparrow}}}{=}\lim_{x\rightarrow -2}\frac{(x+2)(x+3)}{(x+2)(x-2)} \underset{\underset{\underset{\color{#0066A7}{\hbox{Divide out ( x+2)}}}{\color{#0066A7}{\hbox{x ≠ -2}}}}{\color{#0066A7}{\uparrow}}} {=}\lim_{x\rightarrow -2}\frac{x+3}{x-2} \underset{\underset{\underset{\color{#0066A7}{\hbox{Rational Function}}}{\color{#0066A7}{\hbox{Use the Limit of a}}}}{\color{#0066A7}{\uparrow}}} {=}\dfrac{-2+3}{-2-2}=-\dfrac{1}{4} \end{eqnarray*} \]