Find y′ if y=ln[(2x−1)3√2x4+1x].
In the remaining examples, we do not explicitly state the domain of a function containing a logarithm. Instead, we assume that the variable is restricted so all arguments for logarithmic functions are positive.
Now we differentiate y. y′=ddx[3ln(2x−1)+12ln(2x4+1)−lnx]=ddx[3ln(2x−1)]+ddx[12ln(2x4+1)]−ddxlnx=3⋅22x−1+12⋅8x32x4+1−1x=62x−1+4x32x4+1−1x