Find \(y^\prime \) if \(y=\ln \left[ \dfrac{\left( 2x-1\right) ^{3}\sqrt{2x^{4}+1}}{x}\right]\!\).
In the remaining examples, we do not explicitly state the domain of a function containing a logarithm. Instead, we assume that the variable is restricted so all arguments for logarithmic functions are positive.
Now we differentiate \(y.\) \[ \begin{eqnarray*} y^\prime &=&\dfrac{d}{dx}\left[ 3\ln \left( 2x-1\right) +\dfrac{1}{2}\ln ( 2x^{4}+1) -\ln x\right]\\ &=&\dfrac{d}{dx}\left[3\ln \left( 2x-1\right)\right] + \dfrac{d}{dx}\left[\dfrac{1}{2}\ln ( 2x^{4}+1)\right] -\dfrac{d}{dx}\ln x \\ &=&3\cdot \dfrac{2}{2x-1}+\dfrac{1}{2}\cdot \dfrac{8x^{3}}{2x^{4}+1}-\dfrac{1}{x}=\dfrac{6}{2x-1}+\dfrac{4x^{3}}{2x^{4}+1}-\dfrac{1}{x} \end{eqnarray*} \]