Find:
\(\lim\limits_{x\rightarrow 0^{+}}( x\ln x)\) \(\lim\limits_{x\rightarrow \infty }\left( x \ \sin \dfrac{1}{x}\right)\)
We choose to use \(\dfrac{\ln x}{\dfrac{1}{x}}\) rather than \(\dfrac{x}{\dfrac{1}{\ln x}}\) because it is easier to find the derivatives of \(\ln x\) and \(\dfrac{1}{x}\) than it is to find the derivatives of \(x\) and \(\dfrac{1}{\ln x}.\)
Solution (a) Since \(\lim\limits_{x\rightarrow 0^{+}}x=0\) and \(\lim\limits_{x\rightarrow 0^{+}}\ln x=-\infty \), then \(x\ln x\) is an indeterminate form at \(0^{+}\) of the type \(0\cdot \infty \). We change \(x\ln x \) to an indeterminate form of the type \(\dfrac{\infty }{\infty }\) by writing \(x\ln x= \dfrac{\ln x}{\dfrac{1}{x}}\) and using L’Hôpital’s Rule. \[ \begin{eqnarray*} \lim\limits_{x\rightarrow 0^{+}}( x\ln x) &=&\lim\limits_{x\rightarrow 0^{+}}\dfrac{\ln x}{\dfrac{1}{x}}=\lim\limits_{x\rightarrow 0^{+}}\dfrac{\dfrac{d}{\textit{dx}}\ln x}{\dfrac{d}{\textit{dx}}\dfrac{1}{x}} =\lim\limits_{x\rightarrow 0^{+}}\dfrac{\dfrac{1}{x}}{-\dfrac{1}{x^{2}}}= \lim\limits_{x\rightarrow 0^{+}}( -x) =0\\[-20.9pt] &&\hspace{16pt}\quad\color{#0066A7}{\underset{\hbox{L'H$\hat{\rm o}$pital's Rule}} {{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height13pt depth0pt}}\right.}}}\qquad\hspace{4.6pc} \hspace{3.7pc}\color{#0066A7}{\underset{\hbox{Simplify}}{{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height13pt depth0pt}}\right.}}} \end{eqnarray*} \]
(b) Since \(\lim\limits_{x\rightarrow \infty }\;x=\infty \) and \(\lim\limits_{x\rightarrow \infty }\;\sin \dfrac{1}{x}=0\), then \(x\sin \dfrac{1}{x}\) is an indeterminate form at \(\infty \) of the type \(0\cdot \infty \). We change \(x\;\sin \dfrac{1}{x}\) to an indeterminate form of the type \(\dfrac{0}{0}\) byeak writing \[ \begin{eqnarray*} \lim\limits_{x\rightarrow \infty }x\;\sin \dfrac{1}{x}&=&\lim\limits_{x\rightarrow \infty } \dfrac{\sin \dfrac{1}{x}}{\dfrac{1}{x}}=\lim\limits_{t\rightarrow 0^{+}}\dfrac{\sin\;t}{t}=1 \\[-1.75pc] &&\qquad\hspace{26.1pt}\color{#0066A7}{\underset{{\hbox {Let} \;t=\dfrac{1}{x}}}{{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height11pt depth0pt}}\right.}}} \end{eqnarray*} \]