Find \(\lim\limits_{x\rightarrow 0^{+}}x^{x}\)
Do not stop after finding \(\lim\limits_{x\rightarrow c} \ln\;{y} { (=L)}\). Remember, we want to find \(\lim\limits_{x\rightarrow c}{ y}(=e^{L}) .\)
Step 1 Let \(y=x^{x}.\) Then \(\ \ln y=x\ln x.\)
Step 2 \(\lim\limits_{x\rightarrow 0^{+}}\;\ln y=\lim\limits_{x\rightarrow 0^{+}}( x\;\ln x) =0\) [from Example 7(a)].
Step 3 Since \(\lim\limits_{x\rightarrow 0^{+}}\;\ln y=0\), \(\lim\limits_{x\rightarrow 0^{+}}y=e^{0}=1\).