Processing math: 100%

Find:

  • x4dx
  • xdx
  • sinxcos2xdx
  • Solution (a) All the antiderivatives of f(x)=x4 are F(x)=x55+C, so x4dx=x55+C

    380

    (b) All the antiderivatives of f(x)=x=x1/2 are F(x)=x3/232+C=2x3/23+C, so xdx=2x3/23+C

    Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.

    (c) No antiderivative in Table 1 corresponds to f(x)=sinxcos2x, so we begin by using trigonometric identities to rewrite sinxcos2x in a form whose antiderivative is recognizable. sinxcos2x=sinxcosxcosx=1cosxsinxcosx=secxtanx

    Then sinxcos2xdx=secxtanxdx=secx+C