Loading [MathJax]/jax/output/CommonHTML/jax.js

Find:

  • dx4x2
  • dx9+4x2
  • Solution (a) dx4x2 resembles 11x2dx= sin1x+C. We begin by rewriting the integrand as 14x2=14(1x24)=121(x2)2

    Now we let u=x2. Then du=dx2, so dx=2du. dx4x2=dx21(x2)2=u=x2dx=2du2du21u2=du1u2=sin1u+C=sin1(x2)+C

    (b) dx9+4x2 resembles 11+x2dx=tan1x+C. We rewrite the integrand as 19+4x2=19(1+4x29)=19[1+(2x3)2]

    Now let u=2x3. Then du=23dx, so dx=32du. dx9+4x2=dx9[1+(2x3)2]=32du9(1+u2)=16du1+u2=16tan1u+C=16tan1(2x3)+C