Find:
Now we let u=x2. Then du=dx2, so dx=2du. ∫dx√4−x2=∫dx2√1−(x2)2=↑u=x2dx=2du∫2du2√1−u2=∫du√1−u2=sin−1u+C=sin−1(x2)+C
(b) ∫dx9+4x2 resembles ∫11+x2dx=tan−1x+C. We rewrite the integrand as 19+4x2=19(1+4x29)=19[1+(2x3)2]
Now let u=2x3. Then du=23dx, so dx=32du. ∫dx9+4x2=∫dx9[1+(2x3)2]=∫32du9(1+u2)=16∫du1+u2=16tan−1u+C=16tan−1(2x3)+C