Find ∫π/201−cos(2θ)2dθ.
393
In the integral on the right, we use the substitution u=2θ. Then du=2dθ so dθ=du2. Now we change the limits of integration:
Now ∫π/20cos(2θ)dθ=∫π0cosudu2=12[sinu]π0=12(sinπ−sin0)=0
Then, ∫π/201−cos(2θ)2dθ=π4−12∫π/20cos(2θ)dθ=π4