Loading [MathJax]/jax/output/CommonHTML/jax.js

Find π/201cos(2θ)2dθ.

Solution We use properties of integrals to simplify before integrating. π/201cos(2θ)2dθ=12π/20[1cos(2θ)]dθ=12[π/20dθπ/20cos(2θ)dθ]=12π/20dθ12π/20cos(2θ)dθ=12[θ]π/2012π/20cos(2θ)dθ=π412π/20cos(2θ)dθ

393

In the integral on the right, we use the substitution u=2θ. Then du=2dθ so dθ=du2. Now we change the limits of integration:

  • when θ=0,   then u=2(0)=0
  • when θ=π2,   then u=2(π2)=π
  • Now π/20cos(2θ)dθ=π0cosudu2=12[sinu]π0=12(sinπsin0)=0

    Then, π/201cos(2θ)2dθ=π412π/20cos(2θ)dθ=π4