If f is an even function and ∫20f(x)dx=−6 and ∫0−5f(x)dx=8, find ∫52f(x)dx.
Solution ∫52f(x)dx=∫02f(x)dx+∫50f(x)dx
Now ∫02f(x)dx=−∫20f(x)dx=6.
Since f is even, ∫50f(x)dx= ∫0−5f(x)dx =8. Then ∫52f(x)dx=∫02f(x)dx+∫50f(x)dx=6+8=14