Finding the Area Between the Graphs of Two Functions

Find the area \(A\) of the region enclosed by the graphs of \(y=\sqrt{4-4x}, y=\sqrt{4-x}\), and the \(x\)-axis:

  1. by partitioning the \(x\)-axis.
  2. by partitioning the \(y\)-axis.

Solution (a) We begin by graphing the two equations and identifying the region whose area we seek. See Figure 11.

Figure 11 The area \(A\) is the sum of the areas \(A_{1}\) and \(A_{2}\).

If we partition the \(x\)-axis, the area \(A\) of the region we seek must be expressed as the sum of the two areas \(A_{1}\) and \(A_{2}\) marked in the figure. [Do you see why? The bottom graph changes at \(x=1\) from \(y=\sqrt{4-4x}\) to \(y=0\) (the \(x\)-axis)].

Area \(A_{1}\) is the region enclosed by the graphs of \(y=\sqrt{4-x}\), and \(y=\sqrt{4-4x}\), and the line \(x=1\). Area \(A_{2}\) is the region enclosed by the graph \(y=\sqrt{4-x}\), the \(x\)-axis,

410

and the line \(x=1\). Then \begin{eqnarray*} A &=&A_{1}+A_{2}=\int_{0}^{1}( \sqrt{4-x}-\sqrt{4-4x})~{\it dx}+\int_{1}^{4}\sqrt{4-x}~{\it dx} \\[4pt] &=&\int_{0}^{1}\sqrt{4-x}~{\it dx}-\int_{0}^{1}\sqrt{4-4x}~{\it dx}+\int_{1}^{4}\sqrt{4-x}~{\it dx} \\[4pt] &=&\int_{0}^{4}\sqrt{4-x}~{\it dx}-\int_{0}^{1}\sqrt{4-4x}~{dx}\!\qquad {\color{#0066A7}{\hbox{$\int_{0}^{1}\sqrt{ {4-x}}{~{dx}}+\int_{1}^{4}\sqrt{{4-x}}{~{dx}}=\int_{0}^{4}\sqrt{{4-x}}{~{dx}}$}}} \end{eqnarray*}

To find the first integral, we use the substitution \(u=4-x\). Then \({\it du}=-{\it dx}\), and \begin{equation*} \int_{0}^{4}\sqrt{4-x}~{\it dx}=-\int_{4}^{0}u^{1/2}{\it du}=\int_{0}^{4}u^{1/2}~{\it du}= \left[ \dfrac{2}{3}u^{3/2}\right] _{0}^{4}=\frac{2}{3}( 8-0) = \frac{16}{3} \end{equation*}

For the other integral, we use the substitution \(u=4-4x\). Then \({\it du}=-4\,{\it dx}\), or equivalently, \({\it dx}=-\dfrac{{\it du}}{4}\), and \begin{equation*} \int_{0}^{1}\sqrt{4-4x}~{\it dx}=-\frac{1}{4}\int_{4}^{0}u^{1/2}~{\it du}=\dfrac{1}{4} \int_{0}^{4}u^{1/2}~{\it du}=\dfrac{1}{4}\left[ \dfrac{2}{3}u^{3/2}\right] _{0}^{4}= \frac{1}{6}( 8-0) =\frac{4}{3} \end{equation*}

The area \(A=\dfrac{16}{3}-\dfrac{4}{3}=4\) square units.

(b)Figure 12 shows the graphs of \(y=\sqrt{4-4x}\) and \(y=\sqrt{4-x}\) and the region whose area \(A\) we seek. Since the graphs of \(y=\sqrt{4-4x}\) and \(y=\sqrt{4-x}\) satisfy the Horizontal-line Test for \(0\leq y\leq 2\), we can express \(y=\sqrt{4-4x}\) as a function \(x=f(y)\) and \(y=\sqrt{4-x}\) as a function \(x=g(y)\). To find \(x=f(y)\), we solve \(y=\sqrt{4-4x}\) for \(x\), where \(x\geq 0\): \begin{eqnarray*} y&=&\sqrt{~4-4x} \\[4pt] y^{2}&=&4-4x \\[4pt] x&=&\dfrac{4-y^{2}}{4} \\[4pt] x&=&f(y)=1-\dfrac{y^{2}}{4} \end{eqnarray*}

To express \(y=\sqrt{4-x}\) as a function \(x=g(y)\), we solve for \(x\), where \(x\geq 0\): \begin{eqnarray*} y &=&\sqrt{~4-x} \\[4pt] y^{2} &=&4-x \\[4pt] x &=&g(y)=4-y^{2} \end{eqnarray*}

The graph of \(x=g(y)=4-y^{2}\) is to the right of the graph of \(x=f(y)=1-\dfrac{y^{2}}{4}, 0\leq y \leq 2\). So, \(g(y)\geq f(y)\). Then \begin{eqnarray*} A&=&\int_{0}^{2}[ g(y)-f(y)]\, {\it dy}=\int_{0}^{2}\left[ (4-y^{2})-\left( 1-\dfrac{y^{2}}{4}\right) \right] {\it dy}=\int_{0}^{2}\left( 3-\dfrac{3y^{2}}{4}\right) {\it dy}\\[4pt] &=&\left[ 3y-\dfrac{y^{3}}{4}\right] _{0}^{2}=6-\dfrac{8}{4}=4\hbox{ square units} \end{eqnarray*}