Find
Solution (a) The integrand contains the quadratic expression x2+x+1. So, we complete the square in the denominator. ∫dxx2+x+1=↑Complete the square∫dx(x2+x+14)+(1−14)=∫dx(x+12)2+34
∫duu2+a2=1atan−1ua+C
Now we use the substitution u=x+12. Then du=dx. ∫dxx2+x+1=∫dx(x+12)2+34=∫duu2+34a=√32=1√32tan−1u√32+C=2√3tan−12u√3+C=2√33tan−12x+1√3+Cu=x+12
We could also complete the square and let u=x+12.
(b) This problem requires some imagination. We force the derivative of the denominator to appear in the numerator by using the following algebraic manipulations: ∫x dxx2+x+1=12∫2x dxx2+x+1Multiply the integrand by 22.=12∫[(2x+1)−1]dxx2+x+1Add and subtract 1 inthe numerator to get 2x+1.=12∫(2x+1)dxx2+x+1−12∫dxx2+x+1Write the integral as thesum of two integrals.
∫g′(x)g(x)dx=ln|g(x)|+C
Now we find each integral separately. We found the integral on the right in (a). In the integral on the left, the numerator equals the derivative of the denominator. 12∫(2x+1)dxx2+x+1=12ln|x2+x+1|
So, ∫x dxx2+x+1=12∫(2x+1)dxx2+x+1−12∫dxx2+x+1=12ln|x2+x+1|−12[2√33tan−12x+1√3]+C=12ln|x2+x+1|−√33tan−12x+1√3+C