Processing math: 100%

Find

  • dxx2+x+1
  • xdxx2+x+1
  • Solution (a) The integrand contains the quadratic expression x2+x+1. So, we complete the square in the denominator. dxx2+x+1=Complete the squaredx(x2+x+14)+(114)=dx(x+12)2+34

    duu2+a2=1atan1ua+C

    Now we use the substitution u=x+12. Then du=dx. dxx2+x+1=dx(x+12)2+34=duu2+34a=32=132tan1u32+C=23tan12u3+C=233tan12x+13+Cu=x+12

    We could also complete the square and let u=x+12.

    (b) This problem requires some imagination. We force the derivative of the denominator to appear in the numerator by using the following algebraic manipulations: x dxx2+x+1=122x dxx2+x+1Multiply the integrand by 22.=12[(2x+1)1]dxx2+x+1Add and subtract 1 inthe numerator to get 2x+1.=12(2x+1)dxx2+x+112dxx2+x+1Write the integral as thesum of two integrals.

    g(x)g(x)dx=ln|g(x)|+C

    Now we find each integral separately. We found the integral on the right in (a). In the integral on the left, the numerator equals the derivative of the denominator. 12(2x+1)dxx2+x+1=12ln|x2+x+1|

    So, x dxx2+x+1=12(2x+1)dxx2+x+112dxx2+x+1=12ln|x2+x+1|12[233tan12x+13]+C=12ln|x2+x+1|33tan12x+13+C