Determine whether \(\int_{1}^{\infty }e^{-x^{2}}dx\) converges or diverges.
Figure 28 illustrates this.
Based on the Comparison Test, if \(\int_{1}^{\infty }e^{-x}dx\) converges, so does \(\int_{1}^{\infty }e^{-x^{2}}dx.\) We investigate \(\int_{1}^{\infty }e^{-x}dx.\) \[ \begin{eqnarray*} \int_{1}^{\infty }e^{-x}dx :\quad\!\!\!\! \lim\limits_{b\rightarrow \infty }\int_{1}^{b}e^{-x}dx &=& \lim\limits_{b\rightarrow \infty }\!\big[-e^{-x}\big] _{1}^{b}=\lim\limits_{b\rightarrow \infty }[-e^{-b}+e^{-1}] =\lim\limits_{b\rightarrow \infty }\left[ \dfrac{1}{e}-\dfrac{1}{e^{b}} \!\right] \\[5pt] &=& \lim\limits_{b\rightarrow \infty }\dfrac{1}{e}-\lim\limits_{b \rightarrow \infty }\dfrac{1}{e^{b}}=\dfrac{1}{e} \end{eqnarray*} \]
Since \(\int_{1}^{\infty }e^{-x}dx\) converges, we conclude that \( \int_{1}^{\infty}e^{-x^{2}}dx\) converges.