The radius of convergence of this series is \(1\).
To find the interval of convergence, we investigate the endpoints. When \( x=1, \) \[ x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}+\cdots+\dfrac{x^{n+1}}{n+1}+\cdots\,=1+ \dfrac{1}{2}+\dfrac{1}{3}+\cdots\, \]
the harmonic series, which diverges. When \(x=-1\), \[ x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}+\cdots+\dfrac{x^{n+1}}{n+1}+\cdots\,=-1+ \dfrac{1}{2}-\dfrac{1}{3}+\cdots+(-1) ^{n+1}\dfrac{1}{n+1}+\cdots \]
an alternating harmonic series, which converges. The interval of convergence of the power series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{x^{k}}{k}\) is \( [-1,\,1) \). So, \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{\ln \dfrac{1}{1-x}=x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3} +\cdots\,=\sum\limits_{k\,=\,0}^{\infty }\dfrac{x^{k+1}}{k+1}\qquad -1\leq x<1}} \tag{1} \end{equation*} \]
608
(b) To find \(\ln 2\), notice that when \(x=-1\), we have \(\ln \dfrac{1}{1-x} =\ln \dfrac{1}{2}=- \ln 2\). In (1) let \(x=-1\). Then \[ \begin{eqnarray*} -\ln 2 &=&-1+\dfrac{1}{2}-\dfrac{1}{3}+\cdots \nonumber \\ \ln 2 &=&1-\dfrac{1}{2}+\dfrac{1}{3}\,\cdots \end{eqnarray*} \]