Find the Maclaurin series for \(f(x) =(1+x) ^{m},\) where \(m\) is any real number.
The Maclaurin expansion for \(f\) is \[ \begin{eqnarray*} (1+x)^{m} &=&1+m\,x+\frac{m(m-1)}{2!}x^{2}+\cdots \\[4pt] && +\, \frac{m(m-1)(m-2)\,\cdots \,(m-n+1)}{n!}x^{n}+\cdots \\[4pt] &=&{m\choose 0}+{m\choose 1}x+{m\choose 2}x^{2}+\cdots +{m\choose n}x^{n}+\cdots =\sum_{k\,=\,0}^{\infty }{m\choose k}\,x^{k} \end{eqnarray*} \]
620
where \[ \boxed{\bbox[#FAF8ED,5pt]{ {m\choose 0} =1 \quad\hbox{and}\quad {m\choose k} =\frac{m (m-1) (m-2) \,\cdots\, (m-k+1) }{k!} }} \]
The series \[ \boxed{\bbox[#FAF8ED,5pt]{ \begin{array}{rcl} (1+x) ^{m} &=&\sum\limits_{k\,=\,0}^{\infty }{m\choose k}\, x^{k}\\ &=&{1}+{m\,}x+\frac{m( m-1) }{2!}x^{2}+\frac{m\,( m-1) (m-2) }{3!}\,x^{3}+\cdots +{m\choose n}x^{n}+\cdots \end{array} }} \]
is called a binomial series because of its similarity in form to the Binomial Theorem, and \({m\choose k}\) is called the binomial coefficient of \({x^{k}}.\)
The following result, which we state without proof, gives the conditions under which the binomial series \((1+x)^{m}\) converges.