(a) Graph the polar equation \(r=1+2 \ \cos \theta,\;0\leq \theta\leq 2\pi.\)
(b) Find parametric equations for \(r=1+2 \ \cos \theta \).
\(\theta\) | \(r=1+2 \ \cos \theta\) | \(( r,\theta )\) |
---|---|---|
\(0\) | \(1+2(1) =3\) | \(( 3,0)\) |
\(\dfrac{\pi }{3}\) | \(1+2\left( \dfrac{1}{2}\right) =2\) | \(\left( 2,\dfrac{\pi }{3}\right)\) |
\(\dfrac{\pi }{2}\) | \(1+2\left( 0\right) =1\) | \(\left( 1,\dfrac{\pi }{2}\right)\) |
\(\dfrac{2\pi }{3}\) | \(1+2\left( -\dfrac{1}{2}\right) =0\) | \(\left( 0,\dfrac{2\pi }{3}\right)\) |
\(\pi\) | \(1+2( -1) =-1\) | \(\left( -1, \ \pi \right)\) |
\(\dfrac{4\pi }{3}\) | \(1+2\left( -\dfrac{1}{2}\right) =0\) | \(\left( 0,\dfrac{4\pi }{3}\right)\) |
\(\dfrac{3\pi }{2}\) | \(1+2\left( 0\right) =1\) | \(\left( 1,\dfrac{3\pi }{2}\right)\) |
\(\dfrac{5\pi }{3}\) | \(1+2\left( \dfrac{1}{2}\right) =2\) | \(\left( 2,\dfrac{5\pi }{3}\right)\) |
\(2\pi\) | \(1+2( 1) =3\) | \(( 3, \ 2\pi )\) |
673
Graphs of polar equations of the form \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{ \begin{array}{rcl@{\qquad}crcl} r&=&a+b \ \cos \theta & r=a+b \ \sin \theta\\ r&=&a-b \ \cos \theta & r=a-b \ \sin \theta \end{array} }} \]
where \(0\lt a\lt b,\) are called limaçons with an inner loop. A limaçon with an inner loop passes through the pole twice.
(b) We obtain parametric equations for \(r=1+2 \ \cos \theta\) by using the conversion formulas \(x=r \ \cos \theta\) and \(y=r \ \sin \theta\): \[ x=r \ \cos \theta =( 1+2 \ \cos \theta ) \ \cos \theta \qquad y=r \ \sin \theta =( 1+2 \ \cos \theta ) \ \sin \theta \]
Here, \(\theta\) is the parameter, and if \(0\leq \theta \leq 2\pi ,\) then the graph is traced out exactly once in the counterclockwise direction.