Processing math: 96%

(a) Graph the polar equation r=3+2 cosθ,0θ2π.

(b) Find parametric equations for r=3+2 cosθ.

Solution (a) The polar equation r=3+2 cosθ contains cosθ, which has the period 2π. We construct Table 3 using common values of θ that range from 0 to 2π, plot the points (r,θ), and trace out the graph, beginning at the point (5,0) and ending at the point (5, 2π), as shown in Figure 44(a). Figure 44(b) shows the graph using technology.

672

TABLE 3
θ r=3+2 cosθ (r,θ)
0 3+2(1)=5 (5,0)
π3 3+2(12)=4 (4,π3)
π2 3+2(0)=3 (3,π2)
2π3 3+2(12)=2 (2,2π3)
π 3+2(1)=1 (1, π)
4π3 3+2(12)=2 (2,4π3)
3π2 3+2(0)=3 (3,3π2)
5π3 3+2(12)=4 (4,5π3)
2π 3+2(1)=5 (5, 2π)
The limaçon r=3+2 cosθ.

(b) We obtain parametric equations for r=3+2 cosθ by using the conversion formulas x=r cosθ and y=r sinθ: x=r cosθ=(3+2 cosθ) cosθy=r sinθ=(3+2 cosθ) sinθ

Here, θ is the parameter, and if 0θ2π, then the graph is traced out exactly once in the counterclockwise direction.

Graphs of polar equations of the form \boxed{\bbox[#FAF8ED,5pt]{ \begin{array}{rcl@{\qquad}crcl} r&=&a+b \ \cos \theta & r=a+b \ \sin \theta\\ r&=&a-b \ \cos \theta & r=a-b \ \sin \theta \end{array} }}

where a> b > 0, are called limaçons without an inner loop. A lima\ciexn on without an inner loop does not pass through the pole.