(a) Graph the polar equation r=3+2 cosθ,0≤θ≤2π.
(b) Find parametric equations for r=3+2 cosθ.
672
θ | r=3+2 cosθ | (r,θ) |
---|---|---|
0 | 3+2(1)=5 | (5,0) |
π3 | 3+2(12)=4 | (4,π3) |
π2 | 3+2(0)=3 | (3,π2) |
2π3 | 3+2(−12)=2 | (2,2π3) |
π | 3+2(−1)=1 | (1, π) |
4π3 | 3+2(−12)=2 | (2,4π3) |
3π2 | 3+2(0)=3 | (3,3π2) |
5π3 | 3+2(12)=4 | (4,5π3) |
2π | 3+2(1)=5 | (5, 2π) |
(b) We obtain parametric equations for r=3+2 cosθ by using the conversion formulas x=r cosθ and y=r sinθ: x=r cosθ=(3+2 cosθ) cosθy=r sinθ=(3+2 cosθ) sinθ
Here, θ is the parameter, and if 0≤θ≤2π, then the graph is traced out exactly once in the counterclockwise direction.
Graphs of polar equations of the form \boxed{\bbox[#FAF8ED,5pt]{ \begin{array}{rcl@{\qquad}crcl} r&=&a+b \ \cos \theta & r=a+b \ \sin \theta\\ r&=&a-b \ \cos \theta & r=a-b \ \sin \theta \end{array} }}
where a> b > 0, are called limaçons without an inner loop. A lima\ciexn on without an inner loop does not pass through the pole.