Find the area of the region enclosed by the limaçon r=2+cosθ.
We see that the region above the polar axis equals the region below it, so the area A of the region enclosed by the limaçon equals twice the area of the region enclosed by r=2+cosθ and swept out by the rays θ=0 and θ=π. A=2∫π012r2dθ=∫π0(2+cosθ)2dθ=∫π0(4+4cosθ+cos2θ)dθ=∫π0[4+4cosθ+1+cos(2θ)2]dθcos2θ=1+cos(2θ)2=[4θ+4sinθ+θ2+14sin(2θ)]π0=9π2