Series | Number of Terms | Estimate of the Sum | Maximum Error |
\[\sum\limits_{k = 1}^{^\infty } {\frac{{{{( - 1)}^{k + 1}}}}{k}} \] | \[n = 3\] | \[{S_3} = 1 - \frac{1}{2} + \frac{1}{3} \approx 0.833\] | \[\left| {{E_3}} \right| \le \frac{1}{4} = 0.25\] |
| \[n = 9\] | \[{S_9} = \sum\limits_{k = 1}^9 {\frac{{{{( - 1)}^{k + 1}}}}{k}} \approx 0.746\] | \[\left| {{E_9}} \right| \le \frac{1}{{10}} = 0.1\] |
| \[n = 99\] | \[{S_{99}} = \sum\limits_{k = 1}^{99} {\frac{{{{( - 1)}^{k + 1}}}}{k}} \approx 0.7\] | \[\left| {{E_{99}}} \right| \le \frac{1}{{100}} = 0.01\] |
| \[n = 999\] | \[{S_{999}} = \sum\limits_{k = 1}^{999} {\frac{{{{( - 1)}^{k + 1}}}}{k}} \approx 0.694\] | \[\left| {{E_{999}}} \right| \le \frac{1}{{1000}} = 0.001\] |