Table 5: TABLE 5 Tests for Convergence and Divergence of Series
Test Name Description Comment
Test for Divergence for all series (p. 566) \(\sum\limits_{k=1}^{\infty }\,a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty}a_{n}\neq 0\). No information is obtained about convergence if \(\lim\limits_{n\,\rightarrow \,\infty}a_{n}=0\).
Integral Test (p. 569) for series of positive terms \(\sum\limits_{k=1}^{\infty }\,a_{k}\) converges (diverges) if \(\int_{1}^{\infty}\,f(x)\,dx\) converges (diverges), where \(f\) is continuous, positive, and decreasing for \(x\geq 1;\) and \(f(k)=a_{k}\) for all \(k\). Good to use if \(f\) is easy to integrate.
Comparison Test for Convergence for series of positive terms (p. 576) \(\sum\limits_{k=1}^{\infty }\,a_{k}\) converges if \(0< a_{k}\leq b_{k}\) and the series \(\sum\limits_{k=1}^{\infty }b_{k}\) converges. \(\sum\limits_{k=1}^{\infty }b_{k}\) must have positive terms and be convergent.
Comparison Test for Divergence for series of positive terms (p. 576) \(\sum\limits_{k=1}^{\infty}\,a_{k}\) diverges if \(a_{k}\geq c_{k}> 0\) and the series \(\sum\limits_{k=1}^{\infty }c_{k}\) diverges. \(\sum\limits_{k=1}^{\infty }c_{k}\) must have positive terms and be divergent.
Limit Comparison Test (p. 577) for series of positive terms \(\sum\limits_{k=1}^{\infty}\,a_{k}\) converges (diverges) if \(\sum\limits_{k=1}^{\infty }b_{k}\) converges (diverges), and \(\lim\limits_{n\,\rightarrow \,\infty }\dfrac{a_{n}}{b_{n}}=L,\) a positive real number. \(\sum\limits_{k=1}^{\infty}b_{k}\) must have positive terms, whose convergence (divergence) can be determined.
Alternating Series Test (p. 582) \(\sum\limits_{k=1}^{\infty}(-1)^{k+1}a_{k}\), \(a_{k}>0,\) converges if
  • \( \lim\limits_{n\rightarrow \infty }a_{n}=0\) and
  • the \(a_{k}\) are nonincreasing.
The error made by using the \(n\)th partial sum as an approximation to the sum \(S\) of the series is less than the \((n+1) \)st term of the series.
Absolute Convergence Test (p. 586) If \(\sum\limits_{k=1}^{\infty}\,\left\vert a_{k}\right\vert \) converges, then \(\sum\limits_{k=1}^{\infty}a_{k}\) converges. The converse is not true. That is, if \(\sum\limits_{k=1}^{\infty}\,\left\vert a_{k}\right\vert \) diverges, \(\sum\limits_{k=1}^{\infty }a_{k}\) may converge.
Ratio Test (p. 591) for series with nonzero terms \(\sum\limits_{k=1}^{\infty }a_{k}\) converges if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert <1\).
\(\sum\limits_{k=1}^{\infty}a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert >1\) or
if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert = \infty\).
Good to use if \(a_{n}\) includes factorials or powers.
It provides no information if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =1.\)
Root Test (p. 593) for series with nonzero terms \(\sum\limits_{k=1}^{\infty }a_{k}\) converges if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }<1\).
\( \sum\limits_{k=1}^{\infty }a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }>1\) or
if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }=\infty\).
Good to use if \(a_{n}\) involves \(n\)th powers.
It provides no information if \(\lim\limits_{n\,\rightarrow\,\infty }\sqrt[n]{\vert a_{n}\vert }=1\).