Loading [MathJax]/jax/output/CommonHTML/jax.js

12.5 Assess Your Understanding

Printed Page 856

Concepts and Vocabulary

  1. True or False If a differentiable function z is defined implicitly by the equation F(x,y,z)=0, then zx=Fx(x,y,z)Fz(x,y,z), provided Fz(x,y,z)0.

False

  1. True or False If x=x(t) and y=y(t) are differentiable functions of t and if z=f(x,y) is a differentiable function of x and y, then dzdt=zx+zy.

False

Skill Building

Answers to Problems 3–40 are given in final form and in mixed form.

In Problems 3–14, find dzdt using Chain Rule I.

  1. z=x2+y2, x=sint, y=cos(2t)

dzdt=(2x)(cost)4ysin(2t)=2sintcost4sin(2t)cos(2t)

  1. z=x2y2, x=sin(2t), y=cost

  1. z=x2+y2, x=tet, y=tet

dzdt=(2x)(tet+et)+(2y)(tet+et)=2t2e2t+2te2t2t2e2t+2te2t

  1. z=x2y2, x=tet, y=t2et

  1. z=eusinv, u=t, v=πt

dzdt=eusinv2t+(eucosv)(π)=etsin(πt)2t+πetcos(πt)

  1. z=eu/v, u=t, v=t3+1

  1. z=eu/v, u=tet, v=et2

dzdt=eu/v(tet+et)vueu/v(2tet2)v2=tet+tett2+et+tett2et22t2et+t2+tett2e2t2

  1. z=ln(uv), u=t5, v=t+1

  1. z=ex2+y2, x=sin(2t), y=cost

dzdt=(2xex2+y2)(2cos(2t))(2yex2+y2)(sint)=4sin(2t)cos(2t)esin2(2t)+cos2t2sintcostesin2(2t)+cos2t

  1. z=ex2y2, x=sin(2t), y=cos(2t)

  1. z=xyx2+y2, x=sint, y=cost

dzdt=(y(x2+y2)(x2+y2)2)(cost)+(x(x2y2)(x2+y2)2)(sint)=cos2tsin2t

  1. z=ylnx+xy+tany, x=tt+1, y=t3t

In Problems 15–22, find dpdt using an extension of Chain Rule I.

  1. p=x2+y2z2, x=tet, y=tet, z=e2t

dpdt=(2x)(tet+et)+(2y)(tet+et)(2z)(2e2t)=2t2e2t+2te2t2t2e2t+2te2t4e4t

  1. p=x2y2z2, x=tet, y=t2et, z=et

  1. p=exsinycosz, x=t, y=πt, z=t2

dpdt=(exsinycosz)(12t)+(excosycosz)(π)(exsinysinz)(12)=etsin(πt)cos(t/2)2t+πetcos(πt)cos(t/2)etsin(πt)sin(t/2)2

  1. p=ln(xyz), x=t5, y=t+1, z=t2

  1. p=wln(uv), u=tet, v=et2, w=e2t

dpdt=(wu)(tet+et)(wv)(2tet2)+ln(uv)(2e2t)=e2t+e2tt+2e2tlnt2t2e2t

  1. p=weu/v, u=t, v=t3+1, w=et

  1. p=u2vw, u=sint, v=cost, w=et

dpdt=(2uvw)(cost)(u2w)(sint)+(u2v)(et)=2etsintcos2tetsin3t+etsin2tcost

  1. p=uvw, u=et, v=tet, w=t2e2t

In Problems 23–34, find zu and zv using Chain Rule II.

  1. z=x2+y2, x=uev, y=veu

zu=(2x)(ev)+(2y)(veu)=2ue2v+2v2e2u; zv=(2x)(uev)+(2y)(eu)=2u2e2v+2ve2u

  1. z=x2y2, x=ulnv, y=vlnu

  1. z=exsiny, x=u2v, y=ln(uv)

zu=(exsiny)(2uv)+(excosy)(1u)=2uveu2vsin(ln(uv))+eu2vcos(ln(uv))u;zv=(exsiny)(u2)+(excosy)(1v)=u2eu2vsin(ln(uv))+eu2vcos(ln(uv))v

  1. z=1ylnx, x=uv, y=vu

  1. z=ln(x2+y2), x=v2u, y=uv2

zu=(2xx2+y2)(v2u2)+(2yx2+y2)(1v2)=2v8u(u4+v8)+2u3u4+v8zv=(2xx2+y2)(2vu)+(2yx2+y2)(2uv3)=4v7u4+v84u4v(u4+v8)

  1. z=xsinyysinx, x=u2v, y=uv2

  1. z=x2+y2, x=sin(uv), y=cos(u+v)

zu=(2x)(cos(uv))(2y)(sin(u+v))=2sin(uv)cos(uv)2sin(u+v)cos(u+v)zv=(2x)(cos(uv))(2y)(sin(u+v))=2sin(uv)cos(uv)2sin(u+v)cos(u+v)

  1. z=ex+y, x=tan1(uv), y=ln(u+v)

  1. z=ser, r=u2+v2, s=vu

zu=(er)(vu2)+(ser)(2u)=veu2+v2u2+2veu2+v2zv=(er)(1u)+(ser)(2v)=eu2+v2u+2v2eu2+v2u

  1. z=s2+r2, s=ln(uv), r=uv

857

  1. z=xy2w3, x=2u+v, y=5u3v, w=2u+3v

zu=2y2w3+10xyw3+6xy2w2=2(5u3v)2(2u+3v)3+10(2u+v)(5u3v)(2u+3v)3+6(2u+v)(5u3v)2(2u+3v)2zv=y2w36xyw3+9xy2w2=(5u3v)2(2u+3v)36(2u+v)(5u3v)(2u+3v)3+9(2u+v)(5u3v)2(2u+3v)2

  1. z=x2y2+w, x=eu+v, y=uv, w=vu

In Problems 35–40, find each partial derivative.

  1. Find fu, fv, fw if f(x,y,z)=x2+y2+z2, x=uv, y=eu+2v+3w,  z=2v+3w.

fu=(2x)(v)+(2y)(eu+2v+3w)=2uv2+2e2u+4v+6wfv=(2x)(u)+(2y)(2eu+2v+3w)+(2z)(2)=2u2v+4e2u+4v+6w+4(2v+3w)fw=(2y)(3eu+2v+3w)+(2z)(3)=6e2u+4v+6w+6(2v+3w)

  1. Find fu, fv, fw if f(x,y,z)=xy2+z2, x=u+v, y=(u+w)lnv,  z=2v+3w.

  1. Find fu, fv, fw if f(x,y,z)=xcosyzcosx+x2yz, x=uvw, y=u2+v2+w2,  z=w.

  1. Find fu, fv, fw if  f(x,y,z)=x2+y2, x=sin(uv), y=cos(u+v),  z=uw2.

  1. Find fu, fv, fw, ft if  f(x,y,z)=x+2y2z2, x=ut,  y=eu+2v+3w+4t,  z=u+12v+4t.

fu=t+4yeu+2v+3w+4t2z=t+4e2u+4v+6w+8t2(u+v/2+4t)fv=8yeu+2v+3w+4tz=8e2u+4v+6w+8tuv/24tfw=12yeu+2v+3w+4t=12e2u+4v+6w+8tft=u+16yeu+2v+3w+4t8z=u+16e2u+4v+6w+8t8(u+v/2+4t)

  1. Find fu, fv, fw, ft if f(x,y,z)=x2+y2+z, x=sin(u+t),  y=cos(vt),  z=uw2.

In Problems 41–46, y is a function of x. Find dydx.

  1. F(x,y)=x2yy2x+xy5=0

dydx=(2xyy2+y)x22xy+x

  1. F(x,y)=x3y2xy+x2y10=0

  1. F(x,y)=xsiny+ysinx2=0

dydx=(siny+ycosx)xcosy+sinx

  1. F(x,y)=xey+yexxy=0

  1. F(x,y)=x1/3+y1/31=0

dydx=y2/3x2/3

  1. F(x,y)=x2/3+y2/31=0

In Problems 47–52, z is a function of x and y. Find zx and zy.

  1. F(x,y,z)=xz+3yz2+x2y35z=0

zx=(z+2xy3)x+6yz5; zy=(3z2+3x2y2)x+6yz5

  1. F(x,y,z)=x2z+y2z+x3y10z=0

  1. F(x,y,z)=sinz+ycosz+xyz10=0

zx=yzcoszysinz+xy; zy=(cosz+xz)coszysinz+xy

  1. F(x,y,z)=xsinycosz+x2z=0

  1. F(x,y,z)=xeyz+yexz+xyz=0

zx=(eyz+yzexz+yz)xyeyz+xyexz+xy; zy=(xzeyz+exz+xz)xyeyz+xyexz+xy

  1. F(x,y,z)=eyzlnx+yexzyz=0

In Problems 53 and 54, find wx, wy, and wz.

  1. w=(2x+3y)4z

wx=8z(2x+3y)4z1; wy=12z(2x+3y)4z1; wz=4(2x+3y)4zln(2x+3y)

  1. w=(2x)3y+4z

Applications and Extensions

  1. Ideal Gas Law One mole of a gas obeys the Ideal Gas Law PV=20T, where P is pressure, V is volume, and T is temperature. If the temperature T of the gas is increasing at the rate of 5 C/s and if, when the temperature is 80 C, the pressure P is 10N/m2 and is decreasing at the rate of 2Nm2s, find the rate of change of the volume V with respect to time.

13.2 m3/ s

  1. Melting Ice A block of ice of dimensions l, w, and h is melting. When l=3m, w=2m, h=1m, these variables are changing so that dldt=1m/h, dwdt=1m/h, and dhdt=0.5m/h.

    1. (a) What is the rate of change in the surface area of the block of ice?
    2. (b) What is the rate of change in the volume of the block of ice?
  1. Wave Equation The one-dimensional wave equation 2fx2=1v22ft2 describes a wave traveling with speed v along the x -axis. The function f represents the displacement x from the equilibrium of the wave at time t.

    1. (a) Show that z=f(x,t)=sin(x+vt) satisfies the wave equation.
    2. (b) Show that z=f(x,t)=exvt satisfies the wave equation.
    3. (c) Show that z=f(x,t)=sinx+sin(vt) does not satisfy the wave equation.
    4. (d) Show that any twice-differentiable function of the form f(x+vt) is a solution of the wave equation.

  1. (a) See Student Solutions Manual.
  2. (b) See Student Solutions Manual.
  3. (c) See Student Solutions Manual.
  4. (d) See Student Solutions Manual.
  1. Economics A toy manufacturer’s production function satisfies a Cobb–Douglas model, Q(L,M)=400L0.3M0.7, where Q is the output in thousands of units, L is the labor in thousands of hours, and M is the machine hours (in thousands). Suppose the labor hours are decreasing at a rate of 4000h/yr and the machine hours are increasing at a rate of 2000h/yr. Find the rate of change of production when

    1. (a) L=19 and M=21
    2. (b) L=21 and M=20
  1. Related Rates Let y=f(a,b), where a=h(s,t) and  b=k(s,t). Suppose when s=1 and t=3, we know that hs=4ks=3ht=1kt=5

    Also, suppose h(1,3)=6k(1,3)=2fa(6,2)=7fb(6,2)=2

    What are ys and yt at the point (1,3)?

ys(1,3)=22; yt(1,3)=3

  1. Related Rates Let z=f(x,y), where x=g(s,t) and  y=h(s,t) . Suppose when s=2 and t=1, we know that xs=5ys=2xt=3yt=2

    Also, suppose g(2,1)=3h(2,1)=4fx(3,4)=12fy(3,4)=7

    What are zs and zt at the point (2,1)?

  1. If z=f(x,y), where x=g(u,v) and y=h(u,v), find expressions for 2zu2, 2zu v, and 2zv2.

2zu2=zx2xu2+zy2yu2+2zx2(xu)2+22zxy(xu)(yu)+2zy2(yu)22zuv=zx2xuv+zy2yuv+2zx2xuxv+2zy2yuyv+2zxy(yuxv+yvxu)2zv2=zx2xv2+zy2yv2+2zx2(xv)2+22zxy(xv)(yv)+2zy2(yv)2

858

  1. If z=f(x,y) and x=rcosθ, y=rsinθ, show that (zr)2+1r2(zθ)2=(zx)2+(zy)2

  1. If z=f(x,y), where x=ucosθvsinθ and y=usinθ+vcosθ, with θ a constant, show that (fu)2+(fv)2=(fx)2+(fy)2.

See Student Solutions Manual.

  1. If z=f(uv,vu), show that zu+zv=0.

    (Hint: Let x=uv and y=vu.)

  1. If z=vf(u2v2), show that vzu+uzv=uzv.

See Student Solutions Manual.

  1. If w=f(u) and u=x2+y2+z2, show that (wx)2+(wy)2+(wz)2=(dwdu)2.

  1. If z=f(xy), show that xzx+yzy=0.

See Student Solutions Manual.

  1. Show that if z=f(uv,vw), then uzu+vzv+wzw=0.

  1. Suppose we denote the expression 2x2+2y2 by Δ . If z=f(x,y), where x=rcosθ and y=rsinθ, show that Δf=2fr2+1r(fr)+1r2(2fθ2).

See Student Solutions Manual.

  1. Prove that if F(x,y,z)=0 is differentiable, then zxxyyz=1.

Challenge Problems

    1. (a) Suppose that F(x,y) has continuous second-order partial derivatives and F(x,y)=0 defines y as a function of x implicitly. Show that d2ydx2=F2yFxx2FxFyFxy+F2xFyyF3yFy0
    2. (b) Use the result from (a) to find d2ydx2 for x3+3xyy3=6.

  1. (a) See Student Solutions Manual.
  2. (b) d2ydx2=6x(3x3y2)26(3x2+3y)(3x3y2)6y(3x2+3y)2(3x3y2)3
  1. f(t,x)=x/(2λt)0eu2du. Show that ft=λfxx.