Printed Page 9999
970
Find ∫10∫e1yxdxdy.
12
Find ∫31∫63(x2+y2)dydx.
Find ∫10∫1yye−x3dxdy.
e−16e
Find ∫10∫√1+x201x2+y2+1dydx.
Find ∫π/40∫tanx0secxdydx
√2−1
Find ∫10∫x−xex+ydydx
Let R be the square region 0≤x≤4, −2≤y≤2 in the xy-plane, and suppose that f(x,y)=x+2y.
Find \iint\limits_{\kern-3ptR}xe^{y}\,{\it dA} if R is the closed rectangular region defined by 0\leq x\leq 2 and 0\leq y\leq 1.
Find \iint\limits_{\kern-3ptR}\sin x\cos y\,{\it dA} if R is the closed rectangular region defined by 0\leq x\leq \dfrac{\pi }{2} and 0\leq y\leq \dfrac{\pi }{3}.
\dfrac{\sqrt{3}}{2}
Volume Find the volume V under the surface z=f(x,y)=e^{x}\cos y over the rectangular region R defined by 0\leq x\leq 1 and 0\leq y\leq \dfrac{\pi }{2}.
Volume Find the volume V under the surface z=f(x, y)=2x^{2}+y^{2} over the rectangular region R defined by 0\leq x\leq 2 and 0\leq y\leq 1.
V = 6 cubic units
The functions f and g are continuous on a closed, bounded region R, and \iint\limits_{\kern-3ptR}f(x,y)\, {\it dA}=-2, \iint\limits_{\kern-3ptR}g(x, y)\, {\it dA}=3. Use the properties of double integrals to find each double integral.
Find \iint\limits_{\kern-3ptR}x\sin (y^{3})\,{\it dA}, where R is the region enclosed by the triangle with vertices (0, 0), (0, 2), and (2, 2).
\dfrac{1}{6}(1-\cos 8)
Find \iint\limits_{\kern-3ptR}(x+y)\,{\it dA}, where R is the region enclosed by y=x and y^{2}=2-x.
Volume Find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x+y+3z=6.
V = 6 cubic units
Volume Find the volume of the ellipsoid 4x^{2}+y^{2}+\dfrac{ z^{2}}{4}=1.
Volume Find the volume of the solid in the first octant enclosed by the coordinate planes, 4y=3(4-x^{2}) and 4z=4-x^{2}.
V = \dfrac{16}5 cubic units
Area Use a double integral to find the area enclosed by the parabola y^{2}=16x and the line y=4x-8.
Find \iint\limits_{\kern-3ptR}\sin\theta\,{\it dA}, where R is the region enclosed by the rays \theta=0 and \theta = \pi/6 and the circle r=6\sin\theta.
12 - \dfrac{27\sqrt{3}}4
Area Use a double integral to find the first-quadrant area enclosed by y^{2}=x^{3} and y=x.
Area Use a double integral and polar coordinates to find the area of the circle r=2\cos \theta.
A = \pi square units
Area Find the first-quadrant area outside r=2a and inside r=4a\cos \theta by using polar coordinates.
Mass Find the mass of a lamina in the shape of a right triangle of height 6 and base 4 if the mass density is proportional to the square of the distance from the vertex at the right angle.
M = 104k, where k is the constant of proportionality
Center of Mass Find the center of mass of the homogeneous lamina enclosed by 3x^{2}=y and y=3x.
Center of Mass Find the center of mass of the homogeneous lamina in quadrant I, enclosed by 4x=y^{2}, y=0, and x=4.
(\bar{x}, \bar{y}) = \left( \dfrac{12}5, \dfrac32 \right)
Moments of Inertia Use double integration to find the moments of inertia for a homogeneous lamina in the shape of the ellipse 2x^{2}+9y^{2}=18.
Surface Area Find the area of the first-octant portion of the plane \dfrac{x}{2}+y+\dfrac{z}{3}=1.
S = \dfrac72
Surface Area Find the surface area of the paraboloid z=x^{2}+y^{2} below the plane z=1.
Surface Area Find the surface area of the cone x^{2}+y^{2}=3z^{2} that lies inside the cylinder x^{2}+y^{2}=4y.
S = \dfrac{16\sqrt{3}}{3} \pi
Find \iiint\limits_{\kern-3ptE}e^{z}\cos x\,{\it dV}, where E is the solid given by 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 2, 0\leq z\leq 1.
Find \int_{0}^{1}\int_{0}^{2-3x} \int_{0}^{2y}x^{2}\,{\it dz}\,{\it dy}\,{\it dx}.
\dfrac{2}{15}
Find \iiint\limits_{\kern-3ptE}ye^{x}\,{\it dV}, where E is the solid given by 0\leq x\leq 1, 0\leq y\leq 1, \ y^{2}\leq z\leq y.
Find \iiint\limits_{\kern-3ptE}xyz~{\it dV}, where E is the solid enclosed by x=0 and x=2-y-z whose projection onto the yz-plane is the region enclosed by the rectangle 0\leq y\leq 1 and 0\leq z\leq 1.
\dfrac{5}{72}
Center of Mass Find the center of mass and the moments of inertia I_x and I_y of the homogeneous hemispherical shell 0\leq a\leq r\leq b, 0\leq \phi \leq \dfrac{\pi }{2}.
Volume Find the volume in the first octant of the paraboloid x^{2}+y^{2}+z=9.
V = \dfrac{81}{8} \pi cubic units
Volume Find the volume in the first octant enclosed by y=0, z=0, x+y=2, x+2y=6, and y^{2}+z^{2}=4.
In Problems 37–40:
(3, 0, 4)
( -2\sqrt{2},2\sqrt{2},3)
(-1, 1, -2)
(1, \sqrt{3}, 4)
971
Volume Use spherical coordinates with triple integrals to find the volume between the spheres x^{2}+y^{2}+z^{2}=4 and x^{2}+y^{2}+z^{2}=1 .
V = \dfrac{28}{3} \pi cubic units
Volume Find the volume cut from the sphere \rho =4 by the cone \phi =\dfrac{\pi }{4}.
Use cylindrical coordinates to find \displaystyle\int_{0}^{2}\int_{0}^{\sqrt{4-x^{2}}}\int_{0}^{\sqrt{4-x^{2}-y^{2}}}\dfrac{z}{ \sqrt{x^{2}+y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}
\dfrac{4\pi}3
Volume Use cylindrical coordinates to find the volume in the first octant inside the cylinder r=1 and below the plane 3x+2y+6z=6.
Use cylindrical coordinates to find \int_{0}^{a}\int_{0}^{\sqrt{a^{2}-x^{2}}}\int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}} }\,{\it dz}\,{\it dy}\,{\it dx}
\dfrac{\pi}6 a^3
Use spherical coordinates to find the iterated integral given in Problem 45.
In Problems 47–51, find each integral using either cylindrical or spherical coordinates (whichever is more convenient).
\int_{-2}^{2}\int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}} }\int_{0}^{\sqrt{16-x^{2}-y^{2}}}\,{\it dz}\,{\it dx}\,{\it dy}
\pi \left(\dfrac{128}3 - 16 \sqrt{3} \right)
\int_{0}^{1}\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\int_{\sqrt{x^{2}+y^{2} }}^{\sqrt{2-x^{2}-y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}
\int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^{2}}}^{\sqrt{ 2-x^{2}}}\int_{0}^{4}(x^{2}+y^{2})~z\,{\it dz}\,{\it dy}\,{\it dx}
16 \pi
\int_{0}^{1}\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}\,{\it dy}\,{\it dx}\,{\it dz}
\int_{0}^{a}\int_{0}^{\sqrt{a^{2}-x^{2}}}\int_{\dfrac{h}{a}\sqrt{ x^{2}+y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}
\dfrac{\pi}6 a^3\left(1-\dfrac{h}{\sqrt{a^2 + h^2}}\right)
In Problems 52–54, find each integral.
\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}(x^{2}+y^{2})^{3/2}\,{\it dy} \,{\it dx}
\int_{-1}^{1}\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}\,{\it dz}\,{\it dx}\,{\it dy}
\dfrac{4\pi}3 \big(\sqrt{2}-1\big)
\int_{0}^{1}\int_{y}^{1}(x^{2}+1)^{2/3}\,{\it dx}\,{\it dy}
In Problems 55–57, find the Jacobian for each change of variables.
x=e^{u+v},\quad y=e^{v-u}
\dfrac{\partial (x,y)}{\partial (u,v)} = 2e^{2v}
x=u+3v,\quad y=2u-v
x=u^{2},\quad y=3v,\quad and z=u+w
\dfrac{\partial (x,y,z)}{\partial (u,v,w)} = 6u
Find \iint\limits_{\kern-3ptR}y^{2}\,{\it dx}\,{\it dy}, where the region R is enclosed by x-2y=1, x-2y=3, 2x+3y=1, and 2x+3y=2, using the change of variables u=x-2y and v=2x+3y.
Find \iint\limits_{\kern-3ptR}(x+y)^{3}\,{\it dx}\,{\it dy}, where the region R is enclosed by the lines x+y=2, x+y=5, x-2y=-1, and x-2y=3, using the change of variables u=x+y and v=x-2y.
203
Find \iint\limits_{\kern-3ptR}xy\,{\it dx}\,{\it dy}, where R is the region enclosed by 2x+y=0, 2x+y=3, x-y=0, and x-y=2.
Find \iiint\limits_{\kern-3ptE}xz^{2}\,{\it dx}\,{\it dy}\,{\it dz}, where E is the solid enclosed by the ellipsoid \dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}+z^{2}=1, using the change of variables u=\dfrac{x}{2}, v=\dfrac{y}{3}, and w=z.
0
Mass A solid in the first octant enclosed by the surface z=xy, the xy-plane, and the cylinder whose intersection with the xy-plane forms a triangle with vertices (0, 0, 0), ( 2, 0, 0), and (0, 1, 0) has mass density \rho=x+y. Find the mass of the solid.