Processing math: 9%

REVIEW EXERCISES

Printed Page 9999

970

  1. Find 10e1yxdxdy.

12

  1. Find 3163(x2+y2)dydx.

  1. Find 101yyex3dxdy.

e16e

  1. Find 101+x201x2+y2+1dydx.

  1. Find π/40tanx0secxdydx

21

  1. Find 10xxex+ydydx

  1. Let R be the square region 0x4, 2y2 in the xy-plane, and suppose that f(x,y)=x+2y.

    1. (a) Partition R into four squares of equal area and evaluate f at the midpoint of each square. Find the corresponding Riemann sum of f over R.
    2. (b) Using the same partition as in (a), but evaluating f at an appropriate point of each square, determine the largest possible Riemann sum and the smallest. What is the average of these values?
    3. (c) What is the actual value of ?

  1. (a) The midpoint Riemann sum is 32.
  2. (b) The largest Riemann sum is 80, the lowest Riemann sum is -16, and their average is 32.
  3. (c) 32
  1. Find \iint\limits_{\kern-3ptR}xe^{y}\,{\it dA} if R is the closed rectangular region defined by 0\leq x\leq 2 and 0\leq y\leq 1.

  1. Find \iint\limits_{\kern-3ptR}\sin x\cos y\,{\it dA} if R is the closed rectangular region defined by 0\leq x\leq \dfrac{\pi }{2} and 0\leq y\leq \dfrac{\pi }{3}.

\dfrac{\sqrt{3}}{2}

  1. Volume Find the volume V under the surface z=f(x,y)=e^{x}\cos y over the rectangular region R defined by 0\leq x\leq 1 and 0\leq y\leq \dfrac{\pi }{2}.

  1. Volume Find the volume V under the surface z=f(x, y)=2x^{2}+y^{2} over the rectangular region R defined by 0\leq x\leq 2 and 0\leq y\leq 1.

V = 6 cubic units

  1. The functions f and g are continuous on a closed, bounded region R, and \iint\limits_{\kern-3ptR}f(x,y)\, {\it dA}=-2, \iint\limits_{\kern-3ptR}g(x, y)\, {\it dA}=3. Use the properties of double integrals to find each double integral.

    1. (a) \iint\limits_{\kern-3ptR}2[ f(x, y) +3g(x, y) ]\, {\it dA}
    2. (b) \iint\limits_{\kern-3ptR}[ g(x, y)-2f(x, y) ]\, {\it dA}
  1. Find \iint\limits_{\kern-3ptR}x\sin (y^{3})\,{\it dA}, where R is the region enclosed by the triangle with vertices (0, 0), (0, 2), and (2, 2).

\dfrac{1}{6}(1-\cos 8)

  1. Find \iint\limits_{\kern-3ptR}(x+y)\,{\it dA}, where R is the region enclosed by y=x and y^{2}=2-x.

  1. Volume Find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x+y+3z=6.

V = 6 cubic units

  1. Volume Find the volume of the ellipsoid 4x^{2}+y^{2}+\dfrac{ z^{2}}{4}=1.

  1. Volume Find the volume of the solid in the first octant enclosed by the coordinate planes, 4y=3(4-x^{2}) and 4z=4-x^{2}.

V = \dfrac{16}5 cubic units

  1. Area Use a double integral to find the area enclosed by the parabola y^{2}=16x and the line y=4x-8.

  1. Find \iint\limits_{\kern-3ptR}\sin\theta\,{\it dA}, where R is the region enclosed by the rays \theta=0 and \theta = \pi/6 and the circle r=6\sin\theta.

12 - \dfrac{27\sqrt{3}}4

  1. Area Use a double integral to find the first-quadrant area enclosed by y^{2}=x^{3} and y=x.

  1. Area Use a double integral and polar coordinates to find the area of the circle r=2\cos \theta.

A = \pi square units

  1. Area Find the first-quadrant area outside r=2a and inside r=4a\cos \theta by using polar coordinates.

  1. Mass Find the mass of a lamina in the shape of a right triangle of height 6 and base 4 if the mass density is proportional to the square of the distance from the vertex at the right angle.

M = 104k, where k is the constant of proportionality

  1. Center of Mass Find the center of mass of the homogeneous lamina enclosed by 3x^{2}=y and y=3x.

  1. Center of Mass Find the center of mass of the homogeneous lamina in quadrant I, enclosed by 4x=y^{2}, y=0, and x=4.

(\bar{x}, \bar{y}) = \left( \dfrac{12}5, \dfrac32 \right)

  1. Moments of Inertia Use double integration to find the moments of inertia for a homogeneous lamina in the shape of the ellipse 2x^{2}+9y^{2}=18.

  1. Surface Area Find the area of the first-octant portion of the plane \dfrac{x}{2}+y+\dfrac{z}{3}=1.

S = \dfrac72

  1. Surface Area Find the surface area of the paraboloid z=x^{2}+y^{2} below the plane z=1.

  1. Surface Area Find the surface area of the cone x^{2}+y^{2}=3z^{2} that lies inside the cylinder x^{2}+y^{2}=4y.

S = \dfrac{16\sqrt{3}}{3} \pi

  1. Find \iiint\limits_{\kern-3ptE}e^{z}\cos x\,{\it dV}, where E is the solid given by 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 2, 0\leq z\leq 1.

  1. Find \int_{0}^{1}\int_{0}^{2-3x} \int_{0}^{2y}x^{2}\,{\it dz}\,{\it dy}\,{\it dx}.

\dfrac{2}{15}

  1. Find \iiint\limits_{\kern-3ptE}ye^{x}\,{\it dV}, where E is the solid given by 0\leq x\leq 1, 0\leq y\leq 1, \ y^{2}\leq z\leq y.

  1. Find \iiint\limits_{\kern-3ptE}xyz~{\it dV}, where E is the solid enclosed by x=0 and x=2-y-z whose projection onto the yz-plane is the region enclosed by the rectangle 0\leq y\leq 1 and 0\leq z\leq 1.

\dfrac{5}{72}

  1. Center of Mass Find the center of mass and the moments of inertia I_x and I_y of the homogeneous hemispherical shell 0\leq a\leq r\leq b, 0\leq \phi \leq \dfrac{\pi }{2}.

  1. Volume Find the volume in the first octant of the paraboloid x^{2}+y^{2}+z=9.

V = \dfrac{81}{8} \pi cubic units

  1. Volume Find the volume in the first octant enclosed by y=0, z=0, x+y=2, x+2y=6, and y^{2}+z^{2}=4.

In Problems 37–40:

  1. (a) Convert each point given in rectangular coordinates to cylindrical coordinates.
  2. (b) Convert each point given in rectangular coordinates to spherical coordinates.

  1. (3, 0, 4)

  1. (a) (r, \theta, z) = (3, 0, 4)
  2. (b) (\rho, \theta, \phi) = \left(5, 0, \cos^{-1} \left(\dfrac{4}{5}\right)\right)
  1. ( -2\sqrt{2},2\sqrt{2},3)

  1. (-1, 1, -2)

  1. (a) (r, \theta, z) = \left(\sqrt{2}, \dfrac{3\pi}4, -2 \right)
  2. (b) (\rho, \theta, \phi) = \left( \sqrt{6}, \dfrac{3\pi}4, \cos^{-1} \left(\dfrac{-2}{\sqrt{6}}\right)\right)
  1. (1, \sqrt{3}, 4)

971

  1. Volume Use spherical coordinates with triple integrals to find the volume between the spheres x^{2}+y^{2}+z^{2}=4 and x^{2}+y^{2}+z^{2}=1 .

V = \dfrac{28}{3} \pi cubic units

  1. Volume Find the volume cut from the sphere \rho =4 by the cone \phi =\dfrac{\pi }{4}.

  1. Use cylindrical coordinates to find \displaystyle\int_{0}^{2}\int_{0}^{\sqrt{4-x^{2}}}\int_{0}^{\sqrt{4-x^{2}-y^{2}}}\dfrac{z}{ \sqrt{x^{2}+y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}

\dfrac{4\pi}3

  1. Volume Use cylindrical coordinates to find the volume in the first octant inside the cylinder r=1 and below the plane 3x+2y+6z=6.

  1. Use cylindrical coordinates to find \int_{0}^{a}\int_{0}^{\sqrt{a^{2}-x^{2}}}\int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}} }\,{\it dz}\,{\it dy}\,{\it dx}

\dfrac{\pi}6 a^3

  1. Use spherical coordinates to find the iterated integral given in Problem 45.

In Problems 47–51, find each integral using either cylindrical or spherical coordinates (whichever is more convenient).

  1. \int_{-2}^{2}\int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}} }\int_{0}^{\sqrt{16-x^{2}-y^{2}}}\,{\it dz}\,{\it dx}\,{\it dy}

\pi \left(\dfrac{128}3 - 16 \sqrt{3} \right)

  1. \int_{0}^{1}\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\int_{\sqrt{x^{2}+y^{2} }}^{\sqrt{2-x^{2}-y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}

  1. \int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^{2}}}^{\sqrt{ 2-x^{2}}}\int_{0}^{4}(x^{2}+y^{2})~z\,{\it dz}\,{\it dy}\,{\it dx}

16 \pi

  1. \int_{0}^{1}\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}\,{\it dy}\,{\it dx}\,{\it dz}

  1. \int_{0}^{a}\int_{0}^{\sqrt{a^{2}-x^{2}}}\int_{\dfrac{h}{a}\sqrt{ x^{2}+y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}}\,{\it dz}\,{\it dy}\,{\it dx}

\dfrac{\pi}6 a^3\left(1-\dfrac{h}{\sqrt{a^2 + h^2}}\right)

In Problems 52–54, find each integral.

  1. \int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}(x^{2}+y^{2})^{3/2}\,{\it dy} \,{\it dx}

  1. \int_{-1}^{1}\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}\,{\it dz}\,{\it dx}\,{\it dy}

\dfrac{4\pi}3 \big(\sqrt{2}-1\big)

  1. \int_{0}^{1}\int_{y}^{1}(x^{2}+1)^{2/3}\,{\it dx}\,{\it dy}

In Problems 55–57, find the Jacobian for each change of variables.

  1. x=e^{u+v},\quad y=e^{v-u}

\dfrac{\partial (x,y)}{\partial (u,v)} = 2e^{2v}

  1. x=u+3v,\quad y=2u-v

  1. x=u^{2},\quad y=3v,\quad and z=u+w

\dfrac{\partial (x,y,z)}{\partial (u,v,w)} = 6u

  1. Find \iint\limits_{\kern-3ptR}y^{2}\,{\it dx}\,{\it dy}, where the region R is enclosed by x-2y=1, x-2y=3, 2x+3y=1, and 2x+3y=2, using the change of variables u=x-2y and v=2x+3y.

  1. Find \iint\limits_{\kern-3ptR}(x+y)^{3}\,{\it dx}\,{\it dy}, where the region R is enclosed by the lines x+y=2, x+y=5, x-2y=-1, and x-2y=3, using the change of variables u=x+y and v=x-2y.

203

  1. Find \iint\limits_{\kern-3ptR}xy\,{\it dx}\,{\it dy}, where R is the region enclosed by 2x+y=0, 2x+y=3, x-y=0, and x-y=2.

  1. Find \iiint\limits_{\kern-3ptE}xz^{2}\,{\it dx}\,{\it dy}\,{\it dz}, where E is the solid enclosed by the ellipsoid \dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}+z^{2}=1, using the change of variables u=\dfrac{x}{2}, v=\dfrac{y}{3}, and w=z.

0

  1. Mass A solid in the first octant enclosed by the surface z=xy, the xy-plane, and the cylinder whose intersection with the xy-plane forms a triangle with vertices (0, 0, 0), ( 2, 0, 0), and (0, 1, 0) has mass density \rho=x+y. Find the mass of the solid.