Printed Page 909
Concepts and Vocabulary
True or False ∫20[∫10xy2dy]dx=[∫20xdx]⋅[∫10y2dy].
True
True or False Fubini’s Theorem states that if a function z=f(x,y) is continuous on a closed rectangular region R defined by a≤x≤b and c≤y≤d, then ∫dc[∫baf(x,y)dx]dy=∫ba[∫dcf(x,y)dx]dy.
False
Multiple Choice The result of integrating ∫41x2√ydy is [(a) a number, (b) a function of y, (c) a function of x and y, (d) a function of x].
(d)
True or False If a function z=f(x,y) is continuous on a closed, rectangular region R, then the double integral ∬ exists.
True
Skill Building
Let f(x,y) =x(3-y) be defined over the region R shown in the figure.
Let f(x,y) =3xy^{2} be defined over the rectangular region R defined by 0\leq x\leq 6, 0\leq y\leq 4.
Let f(x,y) =x^{2}+y be defined over the rectangular region R defined by 1\leq x\leq 5, 2\leq y\leq 4.
910
Let f(x,y) =x\left( 1-y\right) be defined over the rectangular region R defined by 0\leq x\leq 3, 0\leq y\leq 4.
Find the Riemann sum for Example 1 if R is divided into four congruent subsquares. Choose (u_{k},v_{k}), k=1,2,3,4, as the center of the kth subsquare.
320
Find the Riemann sum for Example 1 if R is divided into eight congruent subrectangles with \Delta x_{i}=1, i=1,2,3,4, and \Delta y_{j}=2, j=1,2. Choose (u_{k},v_{k}), k=1,2,3,\ldots ,8, as the center of the kth subrectangle.
In Problems 11–16, find the indicated partial integral.
\int_{1}^{e}\dfrac{x}{y}dy
x
\int_{0}^{2}\dfrac{x}{y}{\it dx}
\int_{0}^{\pi /2}x\sin y\,{\it dx}
\dfrac{\pi^2}{8} \sin y
\int_{0}^{\pi /2}x\sin y\,{\it dy}
\int_{0}^{1}e^{x}\,{\it dx}
e-1
\int_{0}^{1}e^{x}\,{\it dy}
In Problems 17–36, find each iterated integral.
\displaystyle\int_{0}^{1}\left[ \int_{0}^{2}x^{2}y\,{\it dy}\right] \! {\it dx}
\dfrac23
\displaystyle\int_{0}^{2}\left[ \int_{0}^{4}x^{2}y\,{\it dx} \right] \! {\it dy}
\displaystyle\int_{0}^{3}\left[ \int_{0}^{2}3xy\,{\it dy}\right] \! {\it dx}
27
\displaystyle\int_{0}^{2}\left[ \int_{0}^{1}3xy\,{\it dx}\right] \! {\it dy}
\displaystyle\int_{-1}^{1}\left[ \int_{0}^{1}3x^{2}y^{2}\,{\it dx} \right] \! {\it dy}
\dfrac23
\displaystyle\int_{0}^{1}\left[\int_{0}^{2}3x^{2}y^{2}\,{\it dy}\right] \! {\it dx}
\displaystyle\int_{0}^{2}\left[ \int_{-1}^{1}2xy^{2}\,{\it dx}\right] \! {\it dy}
0
\displaystyle\int_{-1}^{1}\left[ \int_{1}^{2}2xy^{2}\,{\it dy} \right] \! {\it dx}
\displaystyle\int_{0}^{\pi /4}\left[\int_{0}^{2}x\cos y\,{\it dx}\right] \! {\it dy}
\sqrt{2}
\displaystyle\int_{0}^{2}\left[ \int_{0}^{\pi /3}x\cos y\,{\it dy}\right] \! {\it dx}
\displaystyle\int_{0}^{3}\left[ \int_{0}^{\pi /3} (4x-3) ^{2}\sin y\,{\it dy}\right]\! {\it dx}
\dfrac{63}2
\displaystyle\int_{0}^{\pi /3}\left[ \int_{0}^{3}(4x-3) \sin y\,{\it dx}\right] \! {\it dy}
\displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi /2}e^{x}\cos y\,{\it dy} \right]\! {\it dx}
e-1
\displaystyle\int_{0}^{\pi /4}\left[ \int_{0}^{1}e^{x}\cos y\,{\it dx}\right]\! {\it dy}
\displaystyle\int_{0}^{2}\left[ \int_{-\pi /2}^{\pi /2}\dfrac{\sin y}{2x+1}\,{\it dy}\right]\! {\it dx}
0
\displaystyle\int_{0}^{\pi /2}\left[ \int_{0}^{2}\dfrac{\sin y}{2x+1} \,{\it dx}\right]\! {\it dy}
\displaystyle\int_{0}^{\pi/2}\left[ \int_{0}^{2}xe^{x}\sin y\,{\it dx}\right]\! {\it dy}
1 + e^2
\displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi/2}xe^{x}\sin y\,{\it dy}\right]\! {\it dx}
\displaystyle\int_{1}^{2}\left[ \int_{0}^{\pi /2}\dfrac{x\cos x}{y}\,{\it dx} \right]\! {\it dy}
\dfrac{(\pi - 2)\ln 2}{2}
\displaystyle\int_{0}^{\pi /3}\left[ \int_{1}^{2}\dfrac{x\cos x}{y}\,{\it dy}\right]\! {\it dx}
In Problems 37–46, use Fubini’s Theorem to find each double integral defined over the rectangular region R.
\displaystyle\iint\limits_{\kern-3ptR} ( 2x+y^{2})\, {\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 3
30
\displaystyle\iint\limits_{\kern-3ptR}( x^{2}-3y)\, {\it dA}, \quad -1\leq x\leq 2, 0\leq y\leq 1
\displaystyle\iint\limits_{\kern-3ptR}x( x^{2}+5) \, {\it dA}, \quad 0\leq x\leq 2, -1\leq y\leq 1
28
\displaystyle\iint\limits_{\kern-3ptR}\sqrt{y}( 3x^{2}+x)\, {\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 4
\displaystyle\iint\limits_{\kern-3ptR}2xe^{y}{\it dA}, \quad -3\leq x\leq 2, 0\leq y\leq 1
5(1-e)
\displaystyle\iint\limits_{\kern-3ptR}e^{2x+y}{\it dA}, \quad 0\leq x\leq 1, -1\leq y\leq 1
\displaystyle\iint\limits_{\kern-3ptR}x\sec ^{2}y\,{\it dA}, \quad 0\leq x\leq 3, 0\leq y\leq \dfrac{\pi }{4}
\dfrac92
\displaystyle\iint\limits_{R}y^{2}\sec x\tan x\,{\it dA}, \quad 0\leq x\leq \dfrac{\pi }{3}, -1\leq y\leq 3
\displaystyle\iint\limits_{\kern-3ptR}\dfrac{x}{2y+3}\,{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 1
\ln\dfrac53
\displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{x-3}\,{\it dA}, \quad 4\leq x\leq 5, 0\leq y\leq 3
Applications and Extensions
In Problems 47–52, use Fubini’s Theorem to find each double integral over the given rectangular region.
\displaystyle\iint\limits_{\kern-3ptR}x\sin (xy)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1
\dfrac{\pi-2}2
\displaystyle\iint\limits_{\kern-3ptR}y\cos (xy)\, {\it dA}, \quad 0\leq x\leq 1, \dfrac{\pi }{2}\leq y\leq 2\pi
\displaystyle\iint\limits_{\kern-3ptR}x^{3}\cos ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1
\dfrac12 - \dfrac12\;\cos \left(\dfrac{\pi^2}{4} \right)
\displaystyle\iint\limits_{\kern-3ptR}x^{3}\sin ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1
\displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{(1+xy^{2}) ^{3}}\,{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 3
\dfrac{111}{76} - \dfrac{\sqrt{2}}{8}\;\tan^{-1} \big(3 \sqrt{2} \,\big)
\displaystyle\iint\limits_{\kern-3ptR}( x^{3}+x) ( x^{2}y+y)\, {\it dA}, \quad 0\leq x\leq 1, 0\leq y\leq 1
911
In Problems 53 and 54:
\displaystyle\iint\limits_{\kern-3ptR}y^{5}e^{xy^{3}}{\it dA}, \quad 0\leq x\leq 1, 0\leq y\leq 2
\dfrac13 (e^8-9)
\displaystyle\iint\limits_{\kern-3ptR}x^{5}ye^{x^{3}y^{2}}{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 1
In Problems 55–64, find the volume under the graph of z=f(x,y) and over the given rectangular region.
f(x,y)=x+2y, \quad 0\leq x\leq 1, 0\leq y\leq 2
5 cubic units
f(x,y)=2x+3y, \quad 0\leq x\leq 2, 0\leq y\leq 3
f(x,y)=x^{2}+y^{2}, \quad 0\leq x\leq 2, 0\leq y\leq 1
\dfrac{10}3 cubic units
f(x,y)=4x^{2}+3y^{2}, \quad 0\leq x\leq 3, -2\leq y\leq 1
f(x,y)=\sin x, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1
1 cubic unit
f(x,y)=\cos y, \quad 0\leq x\leq 1, 0\leq y\leq \dfrac{\pi }{2}
f(x,y)=\dfrac{x^{2}+y^{2}}{xy} \quad 1\leq x\leq 2, 1\leq y\leq 2
3\;\ln\;2 cubic units
f(x,y)=\dfrac{y^{2}}{x^{2}}, \quad 1\leq x\leq 2, 1\leq y\leq 2
f(x,y)=e^{x+y}, \quad 0\leq x\leq 2, 0\leq y\leq 1
(e-1)^2(e+1) cubic units
f(x,y)=e^{x-y}, \quad 0\leq x\leq 2, 1\leq y\leq 2
Volume Find the volume of the solid below the paraboloid z=x^{2}+y^{2} and above the square in the xy-plane enclosed by the lines x=\pm 1 and y=\pm 1.
\dfrac83 cubic units
Show that \displaystyle\iint\limits_{\kern-3ptR}{\it dA}=\int_{c}^{d}\big[ \int_{a}^{b}{\it dx}\big] {\it dy} =(b-a) (d-c) . That is, show that the volume of a solid with height 1, \displaystyle\iint\limits_{\kern-3ptR}{\it dA}, defined over a rectangular region a\leq x\leq b, c\leq y\leq d is numerically equal to the area of the rectangle.
Challenge Problems
Average Value of a Function Suppose that z=f(x,y) is integrable over a closed, rectangular region R in the xy-plane. Let P be a partition of R into N subrectangles of equal area \Delta A. Evaluate f at the center (u_{k},v_{k}) of the kth subrectangle (k=1,2,\ldots ,N), and let AVG be the average of these N values.
See the Student Solutions Manual.
In Problems 68 and 69, find the average value of each function over the given rectangular region.
f(x,y) =y\cos x, \quad 0\leq x\leq \pi , 1\leq y\leq 5
f(x,y) =\dfrac{xy}{x^{2}+1}, \quad 0\leq x\leq 1, 0\leq y\leq 2
\dfrac12 \ln 2