Processing math: 5%

14.1 Assess Your Understanding

Printed Page 909

Concepts and Vocabulary

  1. True or False20[10xy2dy]dx=[20xdx][10y2dy].

True

  1. True or False Fubini’s Theorem states that if a function z=f(x,y) is continuous on a closed rectangular region R defined by axb and cyd, then dc[baf(x,y)dx]dy=ba[dcf(x,y)dx]dy.

False

  1. Multiple Choice The result of integrating 41x2ydy is [(a) a number, (b) a function of y, (c) a function of x and y, (d) a function of x].

(d)

  1. True or False If a function z=f(x,y) is continuous on a closed, rectangular region R, then the double integral exists.

True

Skill Building

  1. Let f(x,y) =x(3-y) be defined over the region R shown in the figure.

    1. (a) Find the Riemann sum of f over R by partitioning the region into nine congruent subsquares with sides \Delta x_{i}=1, i=1,2,3, and \Delta y_{j}=1, j=1,2,3.

      Choose the lower right corner of each subsquare as (u_{k},v_{k}), k=1,2,3,\ldots , 9.
    2. (b) Find the Riemann sum of f over the partition used in (a) but choose the upper left corner of each subsquare as (u_{k},v_{k}), k=1,2,3,\ldots , 9.

  1. (a) 36
  2. (b) 9
  1. Let f(x,y) =3xy^{2} be defined over the rectangular region R defined by 0\leq x\leq 6, 0\leq y\leq 4.

    1. (a) Find the Riemann sum of f over R by partitioning the region into six congruent subsquares, with sides \Delta x_{i}=2, i=1,2,3, and \Delta y_{j}=2, j=1,2. Choose the lower left corner of each subsquare as (u_{k},v_{k}), k=1,2,3,\ldots , 6.
    2. (b) Find the Riemann sum of f over the partition used in (a) but choose the lower right corner of each subsquare as (u_{k},v_{k}), k=1,2,3, \ldots , 6.
  1. Let f(x,y) =x^{2}+y be defined over the rectangular region R defined by 1\leq x\leq 5, 2\leq y\leq 4.

    1. (a) Find the Riemann sum of f over R by partitioning the region into four congruent subrectangles with sides \Delta x_{i}=2, i=1,2, and \Delta y_{j}=1, j=1,2. Choose the lower left corner of each subrectangle as (u_{k},v_{k}), k=1,2,3,4.
    2. (b) Find the Riemann sum of f over the partition used in (a) but choose the upper right corner of each subrectangle as (u_{k},v_{k}), k=1,2,3,4.

  1. (a) 60
  2. (b) 164

910

  1. Let f(x,y) =x\left( 1-y\right) be defined over the rectangular region R defined by 0\leq x\leq 3, 0\leq y\leq 4.

    1. (a) Find the Riemann sum of f over R by partitioning the region into six congruent subrectangles with sides \Delta x_{i}=1, i=1,2,3, and \Delta y_{j}=2, j=1,2. Choose the lower left corner of each subrectangle as (u_{k},v_{k}), k=1,2,3,\ldots ,6.
    2. (b) Find the Riemann sum of f over the partition used in (a) but choose the upper left corner of each subrectangle as (u_{k},v_{k}), k=1,2,3,\ldots ,6.
  1. Find the Riemann sum for Example 1 if R is divided into four congruent subsquares. Choose (u_{k},v_{k}), k=1,2,3,4, as the center of the kth subsquare.

320

  1. Find the Riemann sum for Example 1 if R is divided into eight congruent subrectangles with \Delta x_{i}=1, i=1,2,3,4, and \Delta y_{j}=2, j=1,2. Choose (u_{k},v_{k}), k=1,2,3,\ldots ,8, as the center of the kth subrectangle.

In Problems 11–16, find the indicated partial integral.

  1. \int_{1}^{e}\dfrac{x}{y}dy

x

  1. \int_{0}^{2}\dfrac{x}{y}{\it dx}

  1. \int_{0}^{\pi /2}x\sin y\,{\it dx}

\dfrac{\pi^2}{8} \sin y

  1. \int_{0}^{\pi /2}x\sin y\,{\it dy}

  1. \int_{0}^{1}e^{x}\,{\it dx}

e-1

  1. \int_{0}^{1}e^{x}\,{\it dy}

In Problems 17–36, find each iterated integral.

  1. \displaystyle\int_{0}^{1}\left[ \int_{0}^{2}x^{2}y\,{\it dy}\right] \! {\it dx}

\dfrac23

  1. \displaystyle\int_{0}^{2}\left[ \int_{0}^{4}x^{2}y\,{\it dx} \right] \! {\it dy}

  1. \displaystyle\int_{0}^{3}\left[ \int_{0}^{2}3xy\,{\it dy}\right] \! {\it dx}

27

  1. \displaystyle\int_{0}^{2}\left[ \int_{0}^{1}3xy\,{\it dx}\right] \! {\it dy}

  1. \displaystyle\int_{-1}^{1}\left[ \int_{0}^{1}3x^{2}y^{2}\,{\it dx} \right] \! {\it dy}

\dfrac23

  1. \displaystyle\int_{0}^{1}\left[\int_{0}^{2}3x^{2}y^{2}\,{\it dy}\right] \! {\it dx}

  1. \displaystyle\int_{0}^{2}\left[ \int_{-1}^{1}2xy^{2}\,{\it dx}\right] \! {\it dy}

0

  1. \displaystyle\int_{-1}^{1}\left[ \int_{1}^{2}2xy^{2}\,{\it dy} \right] \! {\it dx}

  1. \displaystyle\int_{0}^{\pi /4}\left[\int_{0}^{2}x\cos y\,{\it dx}\right] \! {\it dy}

\sqrt{2}

  1. \displaystyle\int_{0}^{2}\left[ \int_{0}^{\pi /3}x\cos y\,{\it dy}\right] \! {\it dx}

  1. \displaystyle\int_{0}^{3}\left[ \int_{0}^{\pi /3} (4x-3) ^{2}\sin y\,{\it dy}\right]\! {\it dx}

\dfrac{63}2

  1. \displaystyle\int_{0}^{\pi /3}\left[ \int_{0}^{3}(4x-3) \sin y\,{\it dx}\right] \! {\it dy}

  1. \displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi /2}e^{x}\cos y\,{\it dy} \right]\! {\it dx}

e-1

  1. \displaystyle\int_{0}^{\pi /4}\left[ \int_{0}^{1}e^{x}\cos y\,{\it dx}\right]\! {\it dy}

  1. \displaystyle\int_{0}^{2}\left[ \int_{-\pi /2}^{\pi /2}\dfrac{\sin y}{2x+1}\,{\it dy}\right]\! {\it dx}

0

  1. \displaystyle\int_{0}^{\pi /2}\left[ \int_{0}^{2}\dfrac{\sin y}{2x+1} \,{\it dx}\right]\! {\it dy}

  1. \displaystyle\int_{0}^{\pi/2}\left[ \int_{0}^{2}xe^{x}\sin y\,{\it dx}\right]\! {\it dy}

1 + e^2

  1. \displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi/2}xe^{x}\sin y\,{\it dy}\right]\! {\it dx}

  1. \displaystyle\int_{1}^{2}\left[ \int_{0}^{\pi /2}\dfrac{x\cos x}{y}\,{\it dx} \right]\! {\it dy}

\dfrac{(\pi - 2)\ln 2}{2}

  1. \displaystyle\int_{0}^{\pi /3}\left[ \int_{1}^{2}\dfrac{x\cos x}{y}\,{\it dy}\right]\! {\it dx}

In Problems 37–46, use Fubini’s Theorem to find each double integral defined over the rectangular region R.

  1. \displaystyle\iint\limits_{\kern-3ptR} ( 2x+y^{2})\, {\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 3

30

  1. \displaystyle\iint\limits_{\kern-3ptR}( x^{2}-3y)\, {\it dA}, \quad -1\leq x\leq 2, 0\leq y\leq 1

  1. \displaystyle\iint\limits_{\kern-3ptR}x( x^{2}+5) \, {\it dA}, \quad 0\leq x\leq 2, -1\leq y\leq 1

28

  1. \displaystyle\iint\limits_{\kern-3ptR}\sqrt{y}( 3x^{2}+x)\, {\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 4

  1. \displaystyle\iint\limits_{\kern-3ptR}2xe^{y}{\it dA}, \quad -3\leq x\leq 2, 0\leq y\leq 1

5(1-e)

  1. \displaystyle\iint\limits_{\kern-3ptR}e^{2x+y}{\it dA}, \quad 0\leq x\leq 1, -1\leq y\leq 1

  1. \displaystyle\iint\limits_{\kern-3ptR}x\sec ^{2}y\,{\it dA}, \quad 0\leq x\leq 3, 0\leq y\leq \dfrac{\pi }{4}

\dfrac92

  1. \displaystyle\iint\limits_{R}y^{2}\sec x\tan x\,{\it dA}, \quad 0\leq x\leq \dfrac{\pi }{3}, -1\leq y\leq 3

  1. \displaystyle\iint\limits_{\kern-3ptR}\dfrac{x}{2y+3}\,{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 1

\ln\dfrac53

  1. \displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{x-3}\,{\it dA}, \quad 4\leq x\leq 5, 0\leq y\leq 3

Applications and Extensions

In Problems 47–52, use Fubini’s Theorem to find each double integral over the given rectangular region.

  1. \displaystyle\iint\limits_{\kern-3ptR}x\sin (xy)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1

\dfrac{\pi-2}2

  1. \displaystyle\iint\limits_{\kern-3ptR}y\cos (xy)\, {\it dA}, \quad 0\leq x\leq 1, \dfrac{\pi }{2}\leq y\leq 2\pi

  1. \displaystyle\iint\limits_{\kern-3ptR}x^{3}\cos ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1

\dfrac12 - \dfrac12\;\cos \left(\dfrac{\pi^2}{4} \right)

  1. \displaystyle\iint\limits_{\kern-3ptR}x^{3}\sin ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1

  1. \displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{(1+xy^{2}) ^{3}}\,{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 3

\dfrac{111}{76} - \dfrac{\sqrt{2}}{8}\;\tan^{-1} \big(3 \sqrt{2} \,\big)

  1. \displaystyle\iint\limits_{\kern-3ptR}( x^{3}+x) ( x^{2}y+y)\, {\it dA}, \quad 0\leq x\leq 1, 0\leq y\leq 1

911

In Problems 53 and 54:

  1. (a) Use Fubini’s Theorem to find each double integral over the given rectangular region.
  2. (b) Change the order of integration and use a CAS to find the double integral, showing that both orders of integration yield the same results.

  1. \displaystyle\iint\limits_{\kern-3ptR}y^{5}e^{xy^{3}}{\it dA}, \quad 0\leq x\leq 1, 0\leq y\leq 2

\dfrac13 (e^8-9)

  1. \displaystyle\iint\limits_{\kern-3ptR}x^{5}ye^{x^{3}y^{2}}{\it dA}, \quad 0\leq x\leq 2, 0\leq y\leq 1

In Problems 55–64, find the volume under the graph of z=f(x,y) and over the given rectangular region.

  1. f(x,y)=x+2y, \quad 0\leq x\leq 1, 0\leq y\leq 2

5 cubic units

  1. f(x,y)=2x+3y, \quad 0\leq x\leq 2, 0\leq y\leq 3

  1. f(x,y)=x^{2}+y^{2}, \quad 0\leq x\leq 2, 0\leq y\leq 1

\dfrac{10}3 cubic units

  1. f(x,y)=4x^{2}+3y^{2}, \quad 0\leq x\leq 3, -2\leq y\leq 1

  1. f(x,y)=\sin x, \quad 0\leq x\leq \dfrac{\pi }{2}, 0\leq y\leq 1

1 cubic unit

  1. f(x,y)=\cos y, \quad 0\leq x\leq 1, 0\leq y\leq \dfrac{\pi }{2}

  1. f(x,y)=\dfrac{x^{2}+y^{2}}{xy} \quad 1\leq x\leq 2, 1\leq y\leq 2

3\;\ln\;2 cubic units

  1. f(x,y)=\dfrac{y^{2}}{x^{2}}, \quad 1\leq x\leq 2, 1\leq y\leq 2

  1. f(x,y)=e^{x+y}, \quad 0\leq x\leq 2, 0\leq y\leq 1

(e-1)^2(e+1) cubic units

  1. f(x,y)=e^{x-y}, \quad 0\leq x\leq 2, 1\leq y\leq 2

  1. Volume Find the volume of the solid below the paraboloid z=x^{2}+y^{2} and above the square in the xy-plane enclosed by the lines x=\pm 1 and y=\pm 1.

\dfrac83 cubic units

  1. Show that \displaystyle\iint\limits_{\kern-3ptR}{\it dA}=\int_{c}^{d}\big[ \int_{a}^{b}{\it dx}\big] {\it dy} =(b-a) (d-c) . That is, show that the volume of a solid with height 1, \displaystyle\iint\limits_{\kern-3ptR}{\it dA}, defined over a rectangular region a\leq x\leq b, c\leq y\leq d is numerically equal to the area of the rectangle.

Challenge Problems

  1. Average Value of a Function Suppose that z=f(x,y) is integrable over a closed, rectangular region R in the xy-plane. Let P be a partition of R into N subrectangles of equal area \Delta A. Evaluate f at the center (u_{k},v_{k}) of the kth subrectangle (k=1,2,\ldots ,N), and let AVG be the average of these N values.

    1. (a) Show that {\it AVG}=\dfrac{1}{A}\sum\limits_{k=1}^{N}f(u_{k},v_{k}) \Delta A, where A is the area of R.
    2. (b) Explain why \lim_{\Vert P\Vert \rightarrow 0}{\it AVG}=\dfrac{1}{A}\iint\limits_{\kern-3ptR}f(x,y)\,{\it dA}
      (This is called the average value of f over R.)

See the Student Solutions Manual.

In Problems 68 and 69, find the average value of each function over the given rectangular region.

  1. f(x,y) =y\cos x, \quad 0\leq x\leq \pi , 1\leq y\leq 5

  1. f(x,y) =\dfrac{xy}{x^{2}+1}, \quad 0\leq x\leq 1, 0\leq y\leq 2

\dfrac12 \ln 2