Concepts and Vocabulary
True or False \(\int_{0}^{2}\big[\int_{0}^{1}xy^{2}{\it dy}\big] {\it dx}=\big[\int_{0}^{2}x\,{\it dx}\big]\cdot \big[\int_{0}^{1}y^{2}{\it dy}\big]\).
True or False Fubini’s Theorem states that if a function \(z=f(x,y) \) is continuous on a closed rectangular region \(R\) defined by \(a\leq x\leq b\) and \(c\leq y\leq d\), then \(\int_{c}^{d} \big[ \int_{a}^{b}f(x,y)\,{\it dx}\big] {\it dy}=\int_{a}^{b}\big[ \int_{c}^{d}f(x,y)\,{\it dx}\big] {\it dy}.\)
Multiple Choice The result of integrating \( \int_{1}^{4}x^{2}\sqrt{y}\,{\it dy}\) is [(a) a number, (b) a function of \(y,\) (c) a function of \(x\) and \(y\), (d) a function of \(x\)].
True or False If a function \(z=f(x,y) \) is continuous on a closed, rectangular region \(R,\) then the double integral \( \displaystyle\iint\limits_{\kern-3ptR}f(x,y)\,{\it dA}\) exists.
Skill Building
Let \(f(x,y) =x(3-y) \) be defined over the region \(R\) shown in the figure.
Let \(f(x,y) =3xy^{2}\) be defined over the rectangular region \(R\) defined by \(0\leq x\leq 6,\) \(0\leq y\leq 4.\)
Let \(f(x,y) =x^{2}+y\) be defined over the rectangular region \(R\) defined by \(1\leq x\leq 5,\) \(2\leq y\leq 4.\)
910
Let \(f(x,y) =x\left( 1-y\right) \) be defined over the rectangular region \(R\) defined by \(0\leq x\leq 3,\) \(0\leq y\leq 4.\)
Find the Riemann sum for Example 1 if \(R\) is divided into four congruent subsquares. Choose \((u_{k},v_{k}),\) \(k=1,2,3,4,\) as the center of the \(k\)th subsquare.
Find the Riemann sum for Example 1 if \(R\) is divided into eight congruent subrectangles with \(\Delta x_{i}=1,\) \(i=1,2,3,4\), and \(\Delta y_{j}=2,\) \(j=1,2\). Choose \((u_{k},v_{k}),\) \(k=1,2,3,\ldots ,8,\) as the center of the \(k\)th subrectangle.
In Problems 11–16, find the indicated partial integral.
\(\int_{1}^{e}\dfrac{x}{y}dy\)
\(\int_{0}^{2}\dfrac{x}{y}{\it dx}\)
\(\int_{0}^{\pi /2}x\sin y\,{\it dx}\)
\(\int_{0}^{\pi /2}x\sin y\,{\it dy}\)
\(\int_{0}^{1}e^{x}\,{\it dx}\)
\(\int_{0}^{1}e^{x}\,{\it dy}\)
In Problems 17–36, find each iterated integral.
\(\displaystyle\int_{0}^{1}\left[ \int_{0}^{2}x^{2}y\,{\it dy}\right] \! {\it dx}\)
\(\displaystyle\int_{0}^{2}\left[ \int_{0}^{4}x^{2}y\,{\it dx} \right] \! {\it dy}\)
\(\displaystyle\int_{0}^{3}\left[ \int_{0}^{2}3xy\,{\it dy}\right] \! {\it dx}\)
\(\displaystyle\int_{0}^{2}\left[ \int_{0}^{1}3xy\,{\it dx}\right] \! {\it dy}\)
\(\displaystyle\int_{-1}^{1}\left[ \int_{0}^{1}3x^{2}y^{2}\,{\it dx} \right] \! {\it dy}\)
\(\displaystyle\int_{0}^{1}\left[\int_{0}^{2}3x^{2}y^{2}\,{\it dy}\right] \! {\it dx}\)
\(\displaystyle\int_{0}^{2}\left[ \int_{-1}^{1}2xy^{2}\,{\it dx}\right] \! {\it dy}\)
\(\displaystyle\int_{-1}^{1}\left[ \int_{1}^{2}2xy^{2}\,{\it dy} \right] \! {\it dx}\)
\(\displaystyle\int_{0}^{\pi /4}\left[\int_{0}^{2}x\cos y\,{\it dx}\right] \! {\it dy}\)
\(\displaystyle\int_{0}^{2}\left[ \int_{0}^{\pi /3}x\cos y\,{\it dy}\right] \! {\it dx}\)
\(\displaystyle\int_{0}^{3}\left[ \int_{0}^{\pi /3} (4x-3) ^{2}\sin y\,{\it dy}\right]\! {\it dx}\)
\(\displaystyle\int_{0}^{\pi /3}\left[ \int_{0}^{3}(4x-3) \sin y\,{\it dx}\right] \! {\it dy}\)
\(\displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi /2}e^{x}\cos y\,{\it dy} \right]\! {\it dx}\)
\(\displaystyle\int_{0}^{\pi /4}\left[ \int_{0}^{1}e^{x}\cos y\,{\it dx}\right]\! {\it dy}\)
\(\displaystyle\int_{0}^{2}\left[ \int_{-\pi /2}^{\pi /2}\dfrac{\sin y}{2x+1}\,{\it dy}\right]\! {\it dx}\)
\(\displaystyle\int_{0}^{\pi /2}\left[ \int_{0}^{2}\dfrac{\sin y}{2x+1} \,{\it dx}\right]\! {\it dy}\)
\(\displaystyle\int_{0}^{\pi/2}\left[ \int_{0}^{2}xe^{x}\sin y\,{\it dx}\right]\! {\it dy}\)
\(\displaystyle\int_{0}^{1}\left[ \int_{0}^{\pi/2}xe^{x}\sin y\,{\it dy}\right]\! {\it dx}\)
\(\displaystyle\int_{1}^{2}\left[ \int_{0}^{\pi /2}\dfrac{x\cos x}{y}\,{\it dx} \right]\! {\it dy}\)
\(\displaystyle\int_{0}^{\pi /3}\left[ \int_{1}^{2}\dfrac{x\cos x}{y}\,{\it dy}\right]\! {\it dx}\)
In Problems 37–46, use Fubini’s Theorem to find each double integral defined over the rectangular region \(R.\)
\(\displaystyle\iint\limits_{\kern-3ptR} ( 2x+y^{2})\, {\it dA}, \quad 0\leq x\leq 2,\) \( 0\leq y\leq 3\)
\(\displaystyle\iint\limits_{\kern-3ptR}( x^{2}-3y)\, {\it dA}, \quad -1\leq x\leq 2,\) \(0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}x( x^{2}+5) \, {\it dA}, \quad 0\leq x\leq 2,\) \( -1\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}\sqrt{y}( 3x^{2}+x)\, {\it dA}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 4\)
\(\displaystyle\iint\limits_{\kern-3ptR}2xe^{y}{\it dA}, \quad -3\leq x\leq 2,\) \( 0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}e^{2x+y}{\it dA}, \quad 0\leq x\leq 1,\) \(-1\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}x\sec ^{2}y\,{\it dA}, \quad 0\leq x\leq 3,\) \(0\leq y\leq \dfrac{\pi }{4}\)
\(\displaystyle\iint\limits_{R}y^{2}\sec x\tan x\,{\it dA}, \quad 0\leq x\leq \dfrac{\pi }{3},\) \(-1\leq y\leq 3\)
\(\displaystyle\iint\limits_{\kern-3ptR}\dfrac{x}{2y+3}\,{\it dA}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{x-3}\,{\it dA}, \quad 4\leq x\leq 5,\) \(0\leq y\leq 3\)
Applications and Extensions
In Problems 47–52, use Fubini’s Theorem to find each double integral over the given rectangular region.
\(\displaystyle\iint\limits_{\kern-3ptR}x\sin (xy)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}\), \(0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}y\cos (xy)\, {\it dA}, \quad 0\leq x\leq 1\), \(\dfrac{\pi }{2}\leq y\leq 2\pi \)
\(\displaystyle\iint\limits_{\kern-3ptR}x^{3}\cos ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}\), \(0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}x^{3}\sin ( x^{2}y)\, {\it dA}, \quad 0\leq x\leq \dfrac{\pi }{2}\), \(0\leq y\leq 1\)
\(\displaystyle\iint\limits_{\kern-3ptR}\dfrac{y^{2}}{(1+xy^{2}) ^{3}}\,{\it dA}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 3\)
\(\displaystyle\iint\limits_{\kern-3ptR}( x^{3}+x) ( x^{2}y+y)\, {\it dA}, \quad 0\leq x\leq 1,\) \(0\leq y\leq 1\)
911
In Problems 53 and 54:
\(\displaystyle\iint\limits_{\kern-3ptR}y^{5}e^{xy^{3}}{\it dA}, \quad 0\leq x\leq 1,\) \(0\leq y\leq 2\)
\(\displaystyle\iint\limits_{\kern-3ptR}x^{5}ye^{x^{3}y^{2}}{\it dA}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 1\)
In Problems 55–64, find the volume under the graph of \(z=f(x,y)\) and over the given rectangular region.
\(f(x,y)=x+2y, \quad 0\leq x\leq 1,\) \(0\leq y\leq 2\)
\(f(x,y)=2x+3y, \quad 0\leq x\leq 2,\) \(0\leq y\leq 3\)
\(f(x,y)=x^{2}+y^{2}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 1\)
\(f(x,y)=4x^{2}+3y^{2}, \quad 0\leq x\leq 3,\) \(-2\leq y\leq 1\)
\(f(x,y)=\sin x, \quad 0\leq x\leq \dfrac{\pi }{2},\) \(0\leq y\leq 1\)
\(f(x,y)=\cos y, \quad 0\leq x\leq 1,\) \(0\leq y\leq \dfrac{\pi }{2}\)
\(f(x,y)=\dfrac{x^{2}+y^{2}}{xy} \quad 1\leq x\leq 2,\) \(1\leq y\leq 2\)
\(f(x,y)=\dfrac{y^{2}}{x^{2}}, \quad 1\leq x\leq 2,\) \(1\leq y\leq 2\)
\(f(x,y)=e^{x+y}, \quad 0\leq x\leq 2,\) \(0\leq y\leq 1\)
\(f(x,y)=e^{x-y}, \quad 0\leq x\leq 2,\) \(1\leq y\leq 2\)
Volume Find the volume of the solid below the paraboloid \( z=x^{2}+y^{2}\) and above the square in the \(xy\)-plane enclosed by the lines \( x=\pm 1\) and \(y=\pm 1\).
Show that \(\displaystyle\iint\limits_{\kern-3ptR}{\it dA}=\int_{c}^{d}\big[ \int_{a}^{b}{\it dx}\big] {\it dy} =(b-a) (d-c) \). That is, show that the volume of a solid with height \(1\), \(\displaystyle\iint\limits_{\kern-3ptR}{\it dA},\) defined over a rectangular region \(a\leq x\leq b,\) \(c\leq y\leq d\) is numerically equal to the area of the rectangle.
Challenge Problems
Average Value of a Function Suppose that \(z=f(x,y)\) is integrable over a closed, rectangular region \(R\) in the \(xy\)-plane. Let \(P\) be a partition of \(R\) into \(N\) subrectangles of equal area \(\Delta A\). Evaluate \(f\) at the center \((u_{k},v_{k})\) of the \(k\)th subrectangle \( (k=1,2,\ldots ,N)\), and let AVG be the average of these \(N\) values.
In Problems 68 and 69, find the average value of each function over the given rectangular region.
\(f(x,y) =y\cos x, \quad 0\leq x\leq \pi ,\) \(1\leq y\leq 5\)
\(f(x,y) =\dfrac{xy}{x^{2}+1}, \quad 0\leq x\leq 1,\) \(0\leq y\leq 2\)