Loading [MathJax]/jax/output/CommonHTML/jax.js

15.6 Assess Your Understanding

Printed Page 1025

1025

Concepts and Vocabulary

  1. Multiple Choice A smooth surface has a [(a) normal plane, (b) tangent plane, (c) coordinate plane] at each point.

(b)

  1. Multiple Choice Suppose x=x(u,v), y=y(u,v), z=z(u,v) are functions defined on a region R in the uv-plane. The set of points defined by (x,y,z)=(x(u,v),y(u,v),z(u,v)) is called a(n) [(a) real surface, (b) uniform surface, (c) parametric surface.

(c)

  1. Multiple Choice The parametric equations x=5cos(u)sin(v), y=5sin(u)sin(v), z=5cos(v) define a [(a) plane, (b) circle, (c) sphere, (d) cylinder, (e) paraboloid].

(c)

  1. Multiple Choice The parametrization r(u,v)=(1u+2v)i+5uj+(2u+3v7)k parametrizes a [(a) plane, (b) sphere, (c)line, (d) cylinder, (e) hyperboloid].

(a)

Skill Building

In Problems 5–8:

  1. (a) Identify the coordinate curves for u=0 and v=0 of each parametrization r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k .
  2. (b) Find a rectangular equation for each parametric surface.

  1. x(u,v)=u5v,y(u,v)=2u,z(u,v)=u+v+1

  1. (a) For u=0: the line r(0,v)=5vi+(1+v)k; for v=0: the line r(u,0)=ui+2uj+(1u)k.
  2. (b) x+2y+5z=5
  1. x(u,v)=u,y(u,v)=v,z(u,v)=9u2v2

  1. x(u,v)=ucosv,y(u,v)=usinv,z(u,v)=u;0u2, 0vπ

  1. (a) For u=0: the point (0,0,0); for v=0: the line r(u,0)=ui+uk.
  2. (b) x2+y2=z2, 0z2
  1. x(u,v)=cosusinv,y(u,v)=sinusinv,z(u,v)=cosv;0u2π,0vπ2

In Problems 9–12, find a parametrization for each surface.

  1. The part of the plane z=4x2y that lies in the first octant

r(u,v)=ui+vj+(4u2v)k; 0u4, 0v212u

  1. The part of the surface z=ex2+y2 that lies inside the cylinder x2+y2=4

  1. The part of the surface z=sin(x2y) that lies above the region bounded by the graphs of y=x+2 and y=x2

r(u,v)=ui+vj+sin(u2v)k;1u2,u2vu+2

  1. The part of the surface y+exz=5 that lies inside the cylinder x2+z2=1

In Problems 13–16:

  1. (a) Find an equation of the tangent plane to each surface at the given point.
  2. (b) Find an equation of the normal line to the tangent plane at the point.

  1. r(u,v)=(3u+2v)i+5u3j+v2k at (7,5,4)

  1. (a) 10x2y5z=40
  2. (b) r(t)=(7+10t)i+(52t)j+(45t)k
  1. r(u,v)=(3uv)i+(2uv)j+(1+3v)k at (11,1,5)

  1. r(u,v)=ui+ucosvj+usinvk at (5,522,522)

  1. (a) 2xyz=0
  2. (b) r(t)=(5+2t)i+(522t)j+(522t)k
  1. r(u,v)=(3cosusinv+1)i+(2sinusinv1)j+cosvk at (1,0,32)

In Problems 17–22, find the surface area of each surface S.

  1. S is parameterized by r(u,v)=ucosvi+u3j+usinvk, 0u1, πvπ.

16π(310+ln(3+10))

  1. S is parameterized by r(u,v)=(3u2+v)i+u2j+(vu2)k,0u2,1v1.

  1. S is the part of the plane 2xy+4z=3 that lies inside the cylinder (x2)2+y2=4.

21π

  1. S is the part of the paraboloid z=4x2y2 that lies above the xy-plane.

  1. S is the part of the sphere x2+y2+z2=16 that lies above the plane z=2.

1π

  1. S is the frustum of the cone z=3x2+y2 that lies between z=3 and z=6.

In Problems 23–28, match each parametrization with its parametric surface.

  1. r (u,v)=ucosvi+usinvjuk,0u4,0v2π

(E)

  1. r (u,v)=u3i+usinvj+ucosvk,0u4,0v2π

  1. r (u,v)=usinvi+ucosvj+uk,0u4,0v2π

(B)

  1. r (u,v)=ui+4sinvj+4cosvk,0u4,0v2π

  1. r (u,v)=ucosvi+usinvju3k,0u4,0v2π

(D)

  1. r (u,v)=vi+v3j+uk,0u4,4v4

1026

Applications and Extensions

  1. Parametrize the part of the cylinder x2+y2=16 that lies above the xy-plane and below z=3.

r(u,v)=4cosui+4sinuj+vk; 0u2π, 0v3

  1. Parametrize the sphere x2+y2+z2=25.

  1. Part of the paraboloid z=9x2y2 lies inside the cylinder (x1)2+y2=1.

    1. (a) Parametrize the surface using rectangular coordinates.
    2. (b) Parametrize the surface using cylindrical coordinates.

  1. (a) r(u,v)=ui+vj+(9u2v2)k, 1(u1)2v1(u1)2,0u2
  2. (b) r(r,θ)=rcosθi+rsinθj+(9r2)k; 0r2,π2θπ2
  1. Parametrize the lumpy sphere x2+y2+z2=3x2+y2+z2+z.
    (Hint: Use spherical coordinates.)

In Problems 33 and 34, parametrize each surface:

  1. (a) Using rectangular coordinates.
  2. (b) Using cylindrical coordinates.
  3. (c) Using spherical coordinates.
    Give bounds for the parameters, if necessary.

  1. The part of the sphere x2+y2+z2=4 lying in the first octant

  1. (a) r(u,v)=ui+vj+4u2v2k; 0u2,0v4u2
  2. (b) r(r,θ)=rcosθi+rsinθj+4r2k; 0r2, 0θπ2
  3. (c) r(θ,ϕ)=2cos(θ)sin(ϕ)i+2sin(θ)sin(ϕ)j+2cos(ϕ)k; 0θπ2, 0ϕπ2
  1. The plane x3y=0, where x0, y0

  1. Tangent Plane to a Torus

    1. (a) Find the tangent plane to the torus parametrized by r(u,v)=cosu(3+cosv)i+sinu(3+cosv)j+sinvk at the point (322,322,1)
    2. (b) Find an equation of the normal line to the tangent plane at the same point.

  1. (a) z=1
  2. (b) r(t)=322i+322j+(1+3t)k
  1. Surface Area Find the surface area S of the torus parametrized by r(u,v)=(2+cosv)cosui+(2+cosv)sinuj+sinvk, 0u2π,  0v2π.

  1. Surface Area Find the surface area S of the helicoid parametrized by r(u,v)=ucos(2v)i+usin(2v)j+vk, 0u1, 0v2π.

5π+12πln(2+5)

  1. Surface Area Find the surface area S of the Möbius strip parametrized by r(u,v)=(2cosu+vcosu2)i+(2sinu+vcosu2)jvsinu2k, 0u2π, 0.5v0.5.

  1. Ellipsoid

    1. (a) Find a parametrization of the ellipsoid x2+y29+z24=1. (Hint: Use modified spherical coordinates.)
    2. (b) Graph the parametrized surface.
    3. (c) Set up, but do not find, the double integral for the surface area of the parametrized ellipsoid.

  1. (a) r(θ,ϕ)=cos(θ)sin(ϕ)i+3sin(θ)sin(ϕ)j+2cos(ϕ)k; 0θ2π, 0ϕπ
  2. (b) See Student Solutions Manual.
  3. (c) S=2π0π036cos2θsin4ϕ+4sin2θsin4ϕ+9sin2ϕcosϕdϕdθ
  1. Helicoid

    1. (a) Graph the helicoid defined by the parametric equations x=ucos(2v), y=usin(2v), z=v, 0u3 and 0v2π.
    2. (b) Parametrize the helicoid
    3. (c) Find an equation of the tangent plane to the helicoid at the point (13,π).
    4. (d) Find an equation of the normal line to the tangent plane at the point (13,π).
  1. Dini's Surface

    1. (a) Graph Dini's surface defined by the parametric equations x=6cosusinvy=6sinusinv,z=6[cosv+ln(tanv2)]+u 0.01v1 and 0u6π.
    2. (b) Find an equation of the tangent plane to Dini's surface at the point (π3,π4).
    3. (c) Find an equation of the normal line to the tangent plane at the point (π3,π4).

  1. (a)
  2. (b) (9326)x+(93+322)y18z=9+3269311122108ln(21)6π
  3. (c) r(t)=(322+(9326)t)i+(326+(93+322)t)j+((32+6ln(21)+π3)18t)k

Challenge Problems

  1. Suppose ΔABC is a triangle with vertices A=(a1,a2,a3), B=(b1,b2,b3), and C=(c1,c2,c3) . Parametrize ΔABC.

  1. Torus A torus is formed by rotating a circle about another circle.

    1. (a) Parametrize the torus obtained by rotating a circle of radius a>0 about a circle of radius b>0.
    2. (b) Find an implicit rectangular equation for the torus.

  1. (a) r(u,v)=(b+acosu)cosvi+(b+acosu)sinvj+asinuk
  2. (b) (bx2+y2)2+z2=a2
  1. Surface Area Find the surface area of S, where S is the part of the cylinder (x1)2+y2=1 outside the sphere x2+y2+z2=4, above the xy-plane, and below z=1.

  1. An Archimedean Ratio  Suppose C is a right circular cone, S is an upper hemisphere, and L is a right circular cylinder. Suppose that all three surfaces have radii r and the heights h of the cone and the cylinder are r. Archimedes was able to show that the ratio of the surface areas among these surfaces is 2:2:2. Show this by parametrizing each of these surfaces and deriving the formulas for their surface areas.

See Student Solutions Manual.

  1. Hyperboloid of One Sheet

    1. (a) Use hyperbolic functions to parametrize the hyperboloid of one sheet: x2+y2z2=c, c>0.
    2. (b) Graph the parametric surface for c=1.
  1. Hyperboloid of Two Sheets

    1. (a) Use hyperbolic functions to parametrize the sheet where x>0 in the hyperboloid of two sheets: x2a2y2b2z2c2=1.
    2. (b) Graph the parametric surface for a=1, b=2, c=3.

  1. (a) r(u,v)=acoshui+(bsinhucosv)j+(csinhusinv)k
  2. (b)