Concepts and Vocabulary
\(y=\sin ^{-1}x\) if and only if \(x=\) _____, where \( -1\leq x\leq 1\) and \(-\dfrac{\pi }{2}\leq y\leq \dfrac{\pi }{2}\).
True or False \(\sin ^{-1} (\sin x) =x,\) where \(-1\leq x\) \(\leq 1\).
True or False The domain of \(y =\sin ^{-1}x\) is \(-\dfrac{\pi }{2}\leq x\leq \dfrac{\pi }{2}\).
True or False \(\sin (\sin ^{-1}0) =0\).
True or False \(y =\tan ^{-1}x\) means \(x=\tan y\), where \(-\infty <x<\infty \) and \(-\dfrac{\pi }{2}\leq y\leq \dfrac{\pi }{2}\).
True or False The domain of the inverse tangent function is the set of all real numbers.
True or False \(\sec ^{-1}0.5\) is not defined.
True or False Trigonometric equations can have multiple solutions.
Practice Problems
In Problems 9–20, find the exact value of each expression.
\(\sin ^{ - 1} \left( {\frac{{\sqrt 2 }}{2}} \right)\)
\(\sin ^{-1}\left( -\dfrac{1}{2}\right)\)
\(\sec^{-1}2\)
\(\tan^{-1}\sqrt{3}\)
\(\tan ^{-1}( -1) \)
\(\sec ^{-1}\dfrac{2\sqrt{3}}{3}\)
\(\tan ^{-1}\left( \tan \dfrac{\pi }{4}\right)\)
\(\tan ^{-1} ( \sin 0)\)
\(\sin \left( \sin ^{-1}\dfrac{3}{5}\right)\)
\(\tan [ \sec ^{-1} ( -3) ]\)
\(\sin ^{-1}\left( \sin \dfrac{4\pi }{5}\right)\)
\(\sec ( \sec ^{-}{}^{1}3)\)
Write \(\cos ( \sin ^{-1}u) \) as an algebraic expression containing \(u\), where \(\vert u \vert \leq 1\).
Write \(\tan ( \sin ^{-1}u)\) as an algebraic expression containing \(u\), where \(\vert u \vert \leq 1\).
Write \(\sec ( \tan ^{-1}u)\) as an algebraic expression containing \(u\).
Show that \(y =\sin ^{-1}x\) is an odd function. That is, show \(\sin ^{-1} ( -x) =-\sin ^{-1}x\).
Show that \(y =\tan ^{-1}x\) is an odd function. That is, show \(\tan ^{-1} ( -x) =-\tan ^{-1}x\).
Given that \(x=\sin ^{-1}\dfrac{1}{2}\), find \(\cos x\), \(\tan x\), \(\cot x\), \(\sec x\), and \(\csc x\).
In Problems 27–44, solve each equation on the interval \(0\leq \theta <2\pi\).
\(\tan \theta =-\dfrac{\sqrt{3}}{3}\)
\(\sec \dfrac{3\theta }{2}=-2\)
64
\(2\sin \theta +3=2\)
\(1-\cos \theta =\dfrac{1}{2}\)
\(\sin ( 3\theta ) =-1\)
\(\cos ( 2\theta ) =\dfrac{1}{2}\)
\(4\cos ^{2}\theta =1\)
\(2\sin ^{2}\theta -1=0\)
\(2\sin ^{2}\theta -5\sin \theta +3=0\)
\(2\cos ^{2}\theta -7\cos \theta -4=0\)
\(1+\sin \theta =2\cos ^{2}\theta\)
\(\sec ^{2}\theta +\tan \theta =0\)
\(\sin \theta +\cos \theta = 0\)
\(\tan \theta =\cot \theta\)
\(\cos (2\theta ) +6\sin ^{2}\theta =4\)
\(\cos ( 2\theta ) =\cos \theta\)
\(\mathbf{\sin }( 2\theta ) +\sin ( 4\theta ) =0\)
\(\cos ( 4\theta) -\cos ( 6\theta ) =0\)
In Problems 45–48, use a calculator to solve each equation on the interval \(0\leq \theta <2\pi\). Round answers to three decimal places.
\(\tan \theta =5\)
\(\cos \theta =0.6\)
\(2+3\sin \theta =0\)
\(4+\sec \theta =0\)