Loading [MathJax]/jax/output/CommonHTML/jax.js

P.7 Assess Your Understanding

Printed Page 56

Concepts and Vocabulary

  1. y=sin1x if and only if x= _____, where 1x1 and π2yπ2.

siny

  1. True or Falsesin1(sinx)=x, where 1x 1.

False

  1. True or False  The domain of y=sin1x is π2xπ2.

False

  1. True or Falsesin(sin10)=0.

True

  1. True or Falsey=tan1x means x=tany, where <x< and π2yπ2.

False

  1. True or False  The domain of the inverse tangent function is the set of all real numbers.

True

  1. True or Falsesec10.5 is not defined.

True

  1. True or False  Trigonometric equations can have multiple solutions.

True

Practice Problems

In Problems 9–20, find the exact value of each expression.

  1. sin1(22)

π4

  1. sin1(12)

  1. sec12

π3

  1. tan13

  1. tan1(1)

π4

  1. sec1233

  1. tan1(tanπ4)

π4

  1. tan1(sin0)

  1. sin(sin135)

35

  1. tan[sec1(3)]

  1. sin1(sin4π5)

π5

  1. sec(sec13)

  1. Write cos(sin1u) as an algebraic expression containing u, where |u|1.

1u2

  1. Write tan(sin1u) as an algebraic expression containing u, where |u|1.

  1. Write sec(tan1u) as an algebraic expression containing u.

1+u2

  1. Show that y=sin1x is an odd function. That is, show sin1(x)=sin1x.

  1. Show that y=tan1x is an odd function. That is, show tan1(x)=tan1x.

See Student Solutions Manual.

  1. Given that x=sin112, find cosx, tanx, cotx, secx, and cscx.

In Problems 27–44, solve each equation on the interval 0θ<2π.

  1. tanθ=33

{5π6,11π6}

  1. sec3θ2=2

64

  1. 2sinθ+3=2

{7π6,11π6}

  1. 1cosθ=12

  1. sin(3θ)=1

{π2,7π6,11π6}

  1. cos(2θ)=12

  1. 4cos2θ=1

{π3,2π3,4π3,5π3}

  1. 2sin2θ1=0

  1. 2sin2θ5sinθ+3=0

{π2}

  1. 2cos2θ7cosθ4=0

  1. 1+sinθ=2cos2θ

{π6,5π6,3π2}

  1. sec2θ+tanθ=0

  1. sinθ+cosθ=0

{3π4,7π4}

  1. tanθ=cotθ

  1. cos(2θ)+6sin2θ=4

{π3,2π3,4π3,5π3}

  1. cos(2θ)=cosθ

  1. sin(2θ)+sin(4θ)=0

{0,π3,π2,2π3,π,4π3,3π2,5π3}

  1. cos(4θ)cos(6θ)=0

In Problems 45–48, use a calculator to solve each equation on the interval 0θ<2π. Round answers to three decimal places.

  1. tanθ=5

{1.373,4.515}

  1. cosθ=0.6

  1. 2+3sinθ=0

{3.871,5.553}

  1. 4+secθ=0

    1. (a) On the same set of axes, graph f(x)=3sin(2x)+2 and g(x)=72 on the interval [0,π].
    2. (b) Solve f(x)=g(x) on the interval [0,π], and label the points of intersection on the graph drawn in (a).
    3. (c) Shade the region bounded by f(x)=3sin(2x)+2 and g(x)=72 between the points found in (b) on the graph drawn in (a).
    4. (d) Solve f(x)>g(x) on the interval [0,π].

  1. (a) (aandc)
  2. (b) (π12,72), (5π12,72)
  3. (c) See (a).
  4. (d) {x|π12<x<5π12}
    1. (a) On the same set of axes, graph f(x)=4cosx and g(x)=2cosx+3 on the interval [0,2π].
    2. (b) Solve f(x)=g(x) on the interval [0,2π], and label the points of intersection on the graph drawn in (a).
    3. (c) Shade the region bounded by f(x)=4cosx and g(x)=2cosx+3 between the points found in (b) on the graph drawn in (a).
    4. (d) Solve f(x)>g(x) on the interval [0,2π].