Processing math: 4%

1.6 Assess Your Understanding

Printed Page 137

Concepts and Vocabulary

  1. True or False The limit of a function as x approaches c depends on the value of the function at c.

False

  1. True or False In the ϵ-δ definition of a limit, we require 0<|xc| to ensure that xc.

True

  1. True or False In an ϵ-δ proof of a limit, the size of δ usually depends on the size of ϵ.

True

  1. True or False When proving lim using the \epsilon -\delta definition of a limit, we try to find a connection between \vert f( x) -c\vert and \vert x-c\vert .

False

138

  1. True or False Given any \epsilon \gt0, suppose there is a \delta \gt0 so that whenever 0\lt\vert x-c\vert \lt\delta , then \vert f(x)-L\vert \lt\epsilon. Then \lim\limits_{x\rightarrow c}f(x)=L.

True

  1. True or False A function f has a limit L at infinity, if for any given \epsilon \gt0, there is a positive number M so that whenever x\gt M, then \vert f(x)-L\vert \gt\epsilon.

False

Skill Building

In Problems 7-12, for each limit, find the largest \delta that “works” for the given \epsilon.

  1. \lim\limits_{x\rightarrow 1}(2x)=2, \quad \epsilon =0.01

\delta = 0.005

  1. \lim\limits_{x\rightarrow 2}(-3x)=-6, \quad \epsilon =0.01

  1. \lim\limits_{x\rightarrow 2}(6x-1)=11 \epsilon =\dfrac{1}{2}

\delta = \dfrac{1}{12}

  1. \lim\limits_{x\rightarrow -3}(2-3x)=11 \epsilon =\dfrac{1}{3}

  1. \lim\limits_{x\rightarrow 2}\left( -\dfrac{1}{2}x+5\right) =4 \epsilon =0.01

\delta = 0.02

  1. \lim\limits_{x\rightarrow \frac{5}{6}}\left( 3x+\dfrac{1}{2}\right) =3 \epsilon =0.3

  1. For the function f(x)=4x-1, we have \lim\limits_{x \rightarrow 3}f(x)=11. For each \epsilon \gt0, find a \delta \gt0 so that \hbox{whenever }\quad 0 \lt\vert x-3\vert \lt\delta\qquad \hbox{then } \vert(4x-1)-11\vert \lt\epsilon

    1. (a) \epsilon =0.1
    2. (b) \epsilon =0.01
    3. (c) \epsilon =0.001
    4. (d) \epsilon \gt0 is arbitrary

  1. (a) \delta \leq 0.025
  2. (b) \delta \leq 0.0025
  3. (c) \delta \leq 0.00025
  4. (d) \delta \leq \dfrac{\varepsilon}{4}
  1. For the function f(x)=2-5x, we have \lim\limits_{x \rightarrow -2}f(x)=12. For each \epsilon \gt0, find a \delta >0 so that \hbox{whenever } 0 \lt\vert x+2\vert \lt\delta \qquad \hbox{then } \vert (2-5x)-12\vert \lt\epsilon

    1. (a) \epsilon =0.2
    2. (b) \epsilon =0.02
    3. (c) \epsilon =0.002
    4. (d) \epsilon \gt0 is arbitrary
  1. For the function f(x)=\dfrac{x^{2}-9}{x+3}, we have \lim\limits_{x\rightarrow -3} f(x)=-6. For each \epsilon \gt0, find a \delta >0 so that \hbox{whenever }\quad 0 \lt\vert x+3\vert \lt\delta \qquad \hbox{then } \left\vert \dfrac{x^{2}-9}{x+3}- ( -6) \right\vert \lt\epsilon

    1. (a) \epsilon =0.1
    2. (b) \epsilon =0.01
    3. (c) \epsilon \gt0 is arbitrary

  1. (a) \delta \leq 0.1
  2. (b) \delta \leq 0.01
  3. (c) \delta \leq \varepsilon
  1. For the function f(x)=\dfrac{x^{2}-4}{x-2}, we have \lim\limits_{x\rightarrow 2}f(x)=4. For each \epsilon \gt0, find a \delta \gt0 so that \hbox{whenever } 0 \lt\vert x-2\vert \lt\delta \qquad \hbox{then } \left\vert \dfrac{x^{2}-4}{x-2}-4\right\vert \lt\epsilon

    1. (a) \epsilon =0.1
    2. (b) \epsilon =0.01
    3. (c) \epsilon \gt0 is arbitrary

In Problems 17–32, write a proof for each limit using the \epsilon-\delta definition of a limit.

  1. \lim\limits_{x\rightarrow 2}(3x)=6

Given any \varepsilon > 0, let \delta\dfrac{\varepsilon}{3}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 3}(4x)=12

  1. \lim\limits_{x\rightarrow 0}(2x+5)=5

Given any \varepsilon > 0, let \delta \leq \dfrac{\varepsilon}{2}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow -1}(2-3x)=5

  1. \lim\limits_{x\rightarrow -3}(-5x+2)=17

Given any \varepsilon > 0, let \delta \leq \dfrac{\varepsilon}{5}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 2}(2x-3)=1

  1. \lim\limits_{x\rightarrow 2}(x^{2}-2x)=0

Given any \varepsilon > 0, let \delta \leq \min \left\{1, \dfrac{\varepsilon}{3}\right\}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 0}(x^{2}+3x)=0

  1. \lim\limits_{x\rightarrow 1}\dfrac{1+2x}{3-x}=\dfrac{3}{2}

Given any \varepsilon > 0, let \delta \leq \min \left\{1, \dfrac{2\varepsilon}{7}\right\}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x \rightarrow 2}\dfrac{2x}{4+x}=\dfrac{2}{3}

  1. \lim\limits_{x\rightarrow 0}\sqrt[3]{{x}}=0

Given any \varepsilon > 0, let \delta \leq \varepsilon ^3. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 1}\sqrt{2-x}=1

  1. \lim\limits_{x\rightarrow -1}x^{2}=1

Given any \varepsilon > 0, let \delta \leq \min \left\{1, \dfrac{\varepsilon}{3}\right\}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 2}x^{3}=8

  1. \lim\limits_{x\rightarrow 3}\dfrac{1}{x}=\dfrac{1}{3}

Given any \varepsilon > 0, let \delta \leq \min \{1, 6\varepsilon \}. See Student Solution Manual for the complete proof.

  1. \lim\limits_{x\rightarrow 2}\dfrac{1}{x^{2}}=\dfrac{1}{4}

  1. Use the \epsilon-\delta definition of a limit to show that the statement \lim\limits_{x\rightarrow 3}(3x-1)=12 is false.

See Student Solution Manual.

  1. Use the \epsilon-\delta definition of a limit to show that the statement \lim\limits_{x\rightarrow -2}(4x)=-7 is false.

Applications and Extensions

  1. Show that \left\vert \dfrac{{1}}{{x^{2}\,+\,9}}-\dfrac{1}{18} \right\vert \lt\dfrac{{7}}{{234}}\,\vert x-3\vert if 2 \lt x\lt4. Use this to show that {\lim\limits_{x\rightarrow 3}}{\dfrac{{1}}{{ x^{2}+9}}}=\dfrac{1}{18}.

Given any \varepsilon > 0, let \delta \leq \min \left\{1, \dfrac{234}{7}\varepsilon \right\}. See Student Solution Manual for the complete proof.

  1. Show that \vert (2+x)^{2}-4\vert \leq 5\,\vert x\vert if -1 \lt x\lt 1. Use this to show that \lim\limits_{x\rightarrow 0}(2+x)^{2}=4.

  1. Show that {\left\vert {{\dfrac{{1}}{{x^{2}+9}}}-{\dfrac{{1}}{{ 13}}}}\right\vert }\leq {\dfrac{{1}}{{26}}\,}\left\vert \,{x-2}\right\vert if 1 \lt x \lt3. Use this to show that {\lim\limits_{x\rightarrow 2}\,}{\dfrac{{1}}{{x^{2}+9}}}={\dfrac{{1}}{{13}}}.

Given any \varepsilon > 0, let \delta \leq \min \{1, 2\mbox{6}\varepsilon \}. See Student Solution Manual for the complete proof.

  1. Use the \epsilon-\delta definition of a limit to show that {\lim\limits_{x\rightarrow 1}}x^{2}\neq 1.31. (Hint: Use \epsilon = 0.1.)

  1. If m and b are any constants, prove that \lim\limits_{x\rightarrow c}( {mx+b}) =mc+b

Given any \varepsilon > 0, let \delta \leq \dfrac{\varepsilon}{1 + | m |}. See Student Solution Manual for the complete proof.

  1. Verify that if x is restricted so that \vert x-2\vert \lt\dfrac{1}{3} in the proof of \lim\limits_{x\rightarrow 2}x^{2}=4, then the choice for \delta would be less than or equal to the smaller of \dfrac{1}{3} and \dfrac{3\epsilon }{13}; that is, \delta \leq \min \left\{ \dfrac{1}{3},\dfrac{3\epsilon }{13}\right\}.

  1. For x\neq 3, how close to 3 must x be to guarantee that 2x-1 differs from 5 by less than 0.1?

x must be within 0.05 of 3.

  1. For x\neq 0, how close to 0 must x be to guarantee that 3^{x} differs from 1 by less than 0.1?

  1. Prove that if \lim\limits_{x\rightarrow c}f(x)\lt0, then there is an open interval around c for which f(x)\lt0 everywhere in the interval, except possibly at c.

See Student Solution Manual.

  1. Use the \epsilon-\delta definition of a limit at infinity to prove that \lim\limits_{x\rightarrow -\infty }\dfrac{1}{x}=0.

139

  1. Use the \epsilon -\delta definition of a limit at infinity to prove that \lim\limits_{x\rightarrow \infty }\left( -\dfrac{1}{\sqrt{x}}\right) =0.

See Student Solution Manual.

  1. For \lim\limits_{x\rightarrow -\infty }\dfrac{1}{x^{2}} =0, find a value of N that satisfies the \epsilon - \delta definition of limits at infinity for \epsilon = 0.1.

  1. Use the \epsilon - \delta definition of limit to prove that no number L exists so that \lim\limits_{x\rightarrow 0} \dfrac{1 }{x}=L.

See Student Solution Manual.

  1. Explain why in the \epsilon - \delta definition of a limit, the inequality 0 \lt \vert x-c\vert \lt\delta has two strict inequality symbols.

  1. The \epsilon - \delta definition of a limit states, in part, that f is defined everywhere in an open interval containing c, except possibly at c. Discuss the purpose of including the phrase, except possibly at c, and why it is necessary.

See Student Solution Manual.

  1. In the \epsilon - \delta definition of a limit, what does \epsilon measure? What does \delta measure? Give an example to support your explanation.

  1. Discuss \lim\limits_{x\rightarrow 0}f( x) and \lim\limits_{x\rightarrow 1}f( x) if \begin{equation*} f(x) =\left\{ \begin{array}{l@{\quad}l} x^{2} & \hbox{if \(x\) is rational} \\ 0 & \hbox{if \(x\) is irrational} \end{array}. \right. \end{equation*}

See Student Solution Manual.

  1. Discuss \lim\limits_{x\rightarrow 0}f( x) if \begin{equation*} f( x) =\left\{ \begin{array}{c@{\quad}l} x^{2} & \hbox{if \(x\) is rational} \\ \tan x & \hbox{if \(x\) is irrational} \end{array}. \right. \end{equation*}

Challenge Problems

  1. Use the \epsilon- \delta definition of limit to prove that \lim\limits_{x\rightarrow 1}(4x^{3}+3x^{2}-24x+22)=5.

Given any \varepsilon > 0, let \delta \leq \min \left\{1, \dfrac{\varepsilon}{47}\right\} . See Student Solution Manual for the complete proof.

  1. If \lim\limits_{x\rightarrow c}f(x)=L and \lim\limits_{x\rightarrow c}g(x)=M, prove that \lim\limits_{x\rightarrow c}[f(x)+g(x)]=L+M. Use the \epsilon - \delta definition of limit.

  1. For \lim\limits_{x\rightarrow \infty }\dfrac{2-x}{\sqrt{ 5+4x^{2}}}=-\dfrac{1}{2}, find a value of M that satisfies the \epsilon - \delta definition of limits at infinity for \epsilon =0.01.

M = 101

  1. Use the \epsilon - \delta definition of a limit to prove that the linear function f(x)=ax+b is continuous everywhere.

  1. Show that the function f( x) =\left\{ \begin{array}{l@{\quad}ll} 0 & \hbox{if} & x\hbox{ is rational} \\ x & \hbox{if} & x\hbox{ is irrational} \end{array} \right. is continuous only at x=0.

See Student Solution Manual.

  1. Suppose that f is defined on an interval (a,b) and there is a number K so that \left\vert f(x)-f(c)\right\vert \leq K\vert x-c\vert for all c in (a,b) and x in (a,b). Such a constant K is called a Lipschitz constant. Find a Lipschitz constant for f(x)=x^{3} on (0,2).