Concepts and Vocabulary
True or False The limit of a function as \(x\) approaches \(c\) depends on the value of the function at \(c\).
True or False In the \(\epsilon\)-\(\delta \) definition of a limit, we require \(0 \lt \vert x-c\vert \) to ensure that \(x\neq c.\)
True or False In an \(\epsilon \)-\(\delta \) proof of a limit, the size of \(\delta \) usually depends on the size of \(\epsilon.\)
True or False When proving \(\lim\limits_{x\rightarrow c}f( x) =L\) using the \(\epsilon \)-\(\delta \) definition of a limit, we try to find a connection between \(\vert f( x) -c\vert \) and \(\vert x-c\vert \).
138
True or False Given any \(\epsilon \gt0\), suppose there is a \(\delta \gt0\) so that whenever \(0\lt\vert x-c\vert \lt\delta \), then \(\vert f(x)-L\vert \lt\epsilon\). Then \( \lim\limits_{x\rightarrow c}f(x)=L\).
True or False A function \(f\) has a limit \(L\) at infinity, if for any given \(\epsilon \gt0\), there is a positive number \(M\) so that whenever \(x\gt M\), then \(\vert f(x)-L\vert \gt\epsilon\).
Skill Building
In Problems 7-12, for each limit, find the largest \(\delta\) that “works” for the given \(\epsilon\).
\(\lim\limits_{x\rightarrow 1}(2x)=2, \quad \epsilon =0.01\)
\(\lim\limits_{x\rightarrow 2}(-3x)=-6, \quad \epsilon =0.01\)
\(\lim\limits_{x\rightarrow 2}(6x-1)=11\) \(\epsilon =\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow -3}(2-3x)=11\) \(\epsilon =\dfrac{1}{3}\)
\(\lim\limits_{x\rightarrow 2}\left( -\dfrac{1}{2}x+5\right) =4\) \(\epsilon =0.01\)
\(\lim\limits_{x\rightarrow \frac{5}{6}}\left( 3x+\dfrac{1}{2}\right) =3\) \(\epsilon =0.3\)
For the function \(f(x)=4x-1\), we have \(\lim\limits_{x \rightarrow 3}f(x)=11\). For each \(\epsilon \gt0\), find a \(\delta \gt0\) so that \[ \hbox{whenever }\quad 0 \lt\vert x-3\vert \lt\delta\qquad \hbox{then } \vert(4x-1)-11\vert \lt\epsilon \]
For the function \(f(x)=2-5x\), we have \(\lim\limits_{x \rightarrow -2}f(x)=12\). For each \(\epsilon \gt0\), find a \(\delta >0\) so that \[ \hbox{whenever } 0 \lt\vert x+2\vert \lt\delta \qquad \hbox{then } \vert (2-5x)-12\vert \lt\epsilon \]
For the function \(f(x)=\dfrac{x^{2}-9}{x+3}\), we have \( \lim\limits_{x\rightarrow -3} f(x)=-6\). For each \(\epsilon \gt0\), find a \(\delta >0\) so that \[ \hbox{whenever }\quad 0 \lt\vert x+3\vert \lt\delta \qquad \hbox{then } \left\vert \dfrac{x^{2}-9}{x+3}- ( -6) \right\vert \lt\epsilon \]
For the function \(f(x)=\dfrac{x^{2}-4}{x-2}\), we have \(\lim\limits_{x\rightarrow 2}f(x)=4\). For each \(\epsilon \gt0\), find a \(\delta \gt0\) so that \[ \hbox{whenever } 0 \lt\vert x-2\vert \lt\delta \qquad \hbox{then } \left\vert \dfrac{x^{2}-4}{x-2}-4\right\vert \lt\epsilon \]
In Problems 17–32, write a proof for each limit using the \(\epsilon\)-\(\delta\) definition of a limit.
\(\lim\limits_{x\rightarrow 2}(3x)=6\)
\(\lim\limits_{x\rightarrow 3}(4x)=12\)
\(\lim\limits_{x\rightarrow 0}(2x+5)=5\)
\(\lim\limits_{x\rightarrow -1}(2-3x)=5\)
\(\lim\limits_{x\rightarrow -3}(-5x+2)=17\)
\(\lim\limits_{x\rightarrow 2}(2x-3)=1\)
\(\lim\limits_{x\rightarrow 2}(x^{2}-2x)=0\)
\(\lim\limits_{x\rightarrow 0}(x^{2}+3x)=0\)
\(\lim\limits_{x\rightarrow 1}\dfrac{1+2x}{3-x}=\dfrac{3}{2}\)
\(\lim\limits_{x \rightarrow 2}\dfrac{2x}{4+x}=\dfrac{2}{3}\)
\(\lim\limits_{x\rightarrow 0}\sqrt[3]{{x}}=0\)
\(\lim\limits_{x\rightarrow 1}\sqrt{2-x}=1\)
\(\lim\limits_{x\rightarrow -1}x^{2}=1\)
\(\lim\limits_{x\rightarrow 2}x^{3}=8\)
\(\lim\limits_{x\rightarrow 3}\dfrac{1}{x}=\dfrac{1}{3}\)
\(\lim\limits_{x\rightarrow 2}\dfrac{1}{x^{2}}=\dfrac{1}{4}\)
Use the \(\epsilon\)-\(\delta\) definition of a limit to show that the statement \(\lim\limits_{x\rightarrow 3}(3x-1)=12\) is false.
Use the \(\epsilon\)-\(\delta\) definition of a limit to show that the statement \(\lim\limits_{x\rightarrow -2}(4x)=-7\) is false.
Applications and Extensions
Show that \(\left\vert \dfrac{{1}}{{x^{2}\,+\,9}}-\dfrac{1}{18} \right\vert \lt\dfrac{{7}}{{234}}\,\vert x-3\vert\) if \(2 \lt x\lt4\). Use this to show that \({\lim\limits_{x\rightarrow 3}}{\dfrac{{1}}{{ x^{2}+9}}}=\dfrac{1}{18}.\)
Show that \(\vert (2+x)^{2}-4\vert \leq 5\,\vert x\vert\) if -1 \(\lt x\lt 1\). Use this to show that \(\lim\limits_{x\rightarrow 0}(2+x)^{2}=4\).
Show that \({\left\vert {{\dfrac{{1}}{{x^{2}+9}}}-{\dfrac{{1}}{{ 13}}}}\right\vert }\leq {\dfrac{{1}}{{26}}\,}\left\vert \,{x-2}\right\vert\) if \(1 \lt x \lt3\). Use this to show that \({\lim\limits_{x\rightarrow 2}\,}{\dfrac{{1}}{{x^{2}+9}}}={\dfrac{{1}}{{13}}}.\)
Use the \(\epsilon-\delta\) definition of a limit to show that \({\lim\limits_{x\rightarrow 1}}x^{2}\neq 1.31.\) (Hint: Use \(\epsilon = 0.1\).)
If \(m\) and \(b\) are any constants, prove that \[ \lim\limits_{x\rightarrow c}( {mx+b}) =mc+b \]
Verify that if \(x\) is restricted so that \(\vert x-2\vert \lt\dfrac{1}{3}\) in the proof of \(\lim\limits_{x\rightarrow 2}x^{2}=4\), then the choice for \(\delta\) would be less than or equal to the smaller of \(\dfrac{1}{3}\) and \(\dfrac{3\epsilon }{13}\); that is, \(\delta \leq \min \left\{ \dfrac{1}{3},\dfrac{3\epsilon }{13}\right\}\).
For \(x\neq 3\), how close to \(3\) must \(x\) be to guarantee that \(2x-1\) differs from 5 by less than 0.1?
For \(x\neq 0\), how close to \(0\) must \(x\) be to guarantee that \(3^{x}\) differs from \(1\) by less than 0.1?
Prove that if \(\lim\limits_{x\rightarrow c}f(x)\lt0\), then there is an open interval around \(c\) for which \(f(x)\lt0\) everywhere in the interval, except possibly at \(c\).
Use the \(\epsilon-\delta\) definition of a limit at infinity to prove that \[ \lim\limits_{x\rightarrow -\infty }\dfrac{1}{x}=0. \]
139
Use the \(\epsilon \)-\(\delta \) definition of a limit at infinity to prove that \[ \lim\limits_{x\rightarrow \infty }\left( -\dfrac{1}{\sqrt{x}}\right) =0. \]
For \(\lim\limits_{x\rightarrow -\infty }\dfrac{1}{x^{2}} =0\), find a value of \(N\) that satisfies the \(\epsilon\) - \(\delta\) definition of limits at infinity for \(\epsilon = 0.1\).
Use the \(\epsilon\) - \(\delta\) definition of limit to prove that no number \(L\) exists so that \(\lim\limits_{x\rightarrow 0}\) \(\dfrac{1 }{x}=L\).
Explain why in the \(\epsilon\) - \(\delta\) definition of a limit, the inequality \(0 \lt \vert x-c\vert \lt\delta\) has two strict inequality symbols.
The \(\epsilon\) - \(\delta\) definition of a limit states, in part, that \(f\) is defined everywhere in an open interval containing \(c\), except possibly at \(c\). Discuss the purpose of including the phrase, except possibly at c, and why it is necessary.
In the \(\epsilon\) - \(\delta\) definition of a limit, what does \(\epsilon\) measure? What does \(\delta\) measure? Give an example to support your explanation.
Discuss \(\lim\limits_{x\rightarrow 0}f( x)\) and \(\lim\limits_{x\rightarrow 1}f( x)\) if \begin{equation*} f(x) =\left\{ \begin{array}{l@{\quad}l} x^{2} & \hbox{if \(x\) is rational} \\ 0 & \hbox{if \(x\) is irrational} \end{array}. \right. \end{equation*}
Discuss \(\lim\limits_{x\rightarrow 0}f( x)\) if \begin{equation*} f( x) =\left\{ \begin{array}{c@{\quad}l} x^{2} & \hbox{if \(x\) is rational} \\ \tan x & \hbox{if \(x\) is irrational} \end{array}. \right. \end{equation*}
Challenge Problems
Use the \(\epsilon\)- \(\delta\) definition of limit to prove that \(\lim\limits_{x\rightarrow 1}(4x^{3}+3x^{2}-24x+22)=5\).
If \(\lim\limits_{x\rightarrow c}f(x)=L\) and \(\lim\limits_{x\rightarrow c}g(x)=M\), prove that \(\lim\limits_{x\rightarrow c}[f(x)+g(x)]=L+M\). Use the \(\epsilon\) - \(\delta\) definition of limit.
For \(\lim\limits_{x\rightarrow \infty }\dfrac{2-x}{\sqrt{ 5+4x^{2}}}=-\dfrac{1}{2}\), find a value of \(M\) that satisfies the \(\epsilon\) - \(\delta\) definition of limits at infinity for \(\epsilon =0.01\).
Use the \(\epsilon\) - \(\delta\) definition of a limit to prove that the linear function \(f(x)=ax+b\) is continuous everywhere.
Show that the function \(f( x) =\left\{ \begin{array}{l@{\quad}ll} 0 & \hbox{if} & x\hbox{ is rational} \\ x & \hbox{if} & x\hbox{ is irrational} \end{array} \right.\) is continuous only at \(x=0\).
Suppose that \(f\) is defined on an interval \((a,b)\) and there is a number \(K\) so that \(\left\vert f(x)-f(c)\right\vert \leq K\vert x-c\vert\) for all \(c\) in \((a,b)\) and \(x\) in \((a,b)\). Such a constant \(K\) is called a Lipschitz constant. Find a Lipschitz constant for \(f(x)=x^{3}\) on \((0,2)\).