Processing math: 0%

REVIEW EXERCISES

Printed Page 9999

  1. Use a table of numbers to investigate lim.

The table suggests \mathop {\lim\limits_{x \to 0}} \dfrac{1 - \cos x}{1 + \cos x} = 0.

\xrightarrow{x\ {\rm approaches}\ 0\atop \mbox{from the left}} \xleftarrow{x\ {\rm approaches}\ 0\atop \mbox{from the right}}
x -0.1 -0.01 -0.001 \rightarrow 0 \leftarrow 0.001 0.01 0.1
f(x)=\dfrac{1 - \cos x}{1 + \cos x} 0.002504 0.000025 0.00000025 f(x) approaches 0 0.00000025 0.000025 0.002504

In Problems 2 and 3, use a graph to investigate \lim\limits_{x\rightarrow c}f(x).

  1. f(x)=\left\{ \begin{array}{l@{\quad}l@{\quad}l} 2x-5 & & \hbox{if }x\lt1 \\ 6-9x & & \hbox{if }x\geq 1 \end{array} \right. \quad at c=1

  1. f(x)=\left\{ \begin{array}{l@{\quad}l@{\quad}l} x^{2}+2 & & \hbox{if }x\lt2 \\ 2x+1 & & \hbox{if }x\geq 2 \end{array} \right. \quad at c=2

\mathop {\lim\limits_{x \to 2}} f(x) does not exist.

  1. For f(x)=x^{2}-3:

    1. (a) Find the slope of the secant line joining (1,-2) and (2,1).
    2. (b) Find the slope of the tangent line to the graph of f at (1,-2).

In Problems 5 and 6, for each function find the limit of the difference quotient \lim\limits_{h\rightarrow 0}\dfrac{f(x+h)-f(x)}{h}.

  1. f(x)=\dfrac{3}{x}

- \dfrac{3}{x^2}

  1. f(x)=3x^{2}+2x

  1. Find \lim\limits_{x\rightarrow 0}f(x) if 1+\sin x\leq f(x)\leq \vert x\vert +1

1

In Problems 8-22, find each limit.

  1. \lim\limits_{x\rightarrow 2} \left( 2x-\dfrac{1}{x}\right)

  1. \lim\limits_{x\rightarrow \pi } \left( x\cos x\right)

-\pi

  1. \lim\limits_{x\rightarrow -1}\left( x^{3}+3x^{2}-x-1\right)

  1. \lim\limits_{x\rightarrow 0}\sqrt[3]{x( x+2) ^{3}}

0

  1. {\lim\limits_{x\rightarrow 0}} [(2x+3) (x^{5}+5x)]

  1. {\lim\limits_{x\rightarrow 3}} \dfrac{x^{3}-27}{x-3}

27

  1. {\lim\limits_{x\rightarrow 3}}\left(\dfrac{x^{2}}{x-3}-\dfrac{3x}{x-3}\right)

  1. {\lim\limits_{x\rightarrow 2}}\dfrac{x^{2}-4}{x-2}

4

  1. {\lim\limits_{x\rightarrow -1}}\dfrac{x^{2}+3x+2} {x^{2}+4x+3}

  1. {\lim\limits_{x\rightarrow -2}} \dfrac{x^{3}+5x^{2}+6x}{x^{2}+x-2}

\dfrac{2}{3}

  1. {\lim\limits_{x\rightarrow 1}} \left(x^{2}-3x+\dfrac{1}{x}\right) ^{15}

  1. {\lim\limits_{x\rightarrow 2}}\dfrac{3-\sqrt{x^{2}+5}}{x^{2}-4}

- \dfrac{1}{6}

  1. {\lim\limits_{x\rightarrow 0}} \left\{ \dfrac{1}{x}\left[ \dfrac{1}{(2+x)^{2}}-\dfrac{1}{4}\right] \right\}

  1. {\lim\limits_{x\rightarrow 0}} \dfrac{\left({x+3}\right) ^{2}-9}{x}

6

  1. {\lim\limits_{x\rightarrow 1}} [(x^{3}-3x^{2}+3x-1) (x+1) ^{2}]

In Problems 23-28, find each one-sided limit, if it exists.

  1. {\lim\limits_{x\rightarrow - 2^{+}}}\dfrac{ x^{2}+5x+6}{x+2}

5

  1. {\lim\limits_{x \rightarrow 5^{+}}}\dfrac{|x-5|}{x-5}

  1. {\lim\limits_{x\rightarrow 1^{-}}}\dfrac{|x-1|}{x-1}

-1

  1. {\lim\limits_{x\rightarrow \,3/2^{+}}}\lfloor 2x\rfloor

  1. {\lim\limits_{x\rightarrow 4^{-}}}\dfrac{x^{2}-16}{x-4}

8

  1. {\lim\limits_{x\rightarrow 1^{+}}},\sqrt{x-1}

In Problems 29 and 30, find \lim\limits_{x\rightarrow c^{-}}f(x) and \lim\limits_{x\rightarrow c^{+}}f(x) for the given c Determine whether \lim\limits_{x\rightarrow c}f(x) exists.

  1. f(x)=\left\{ \begin{array}{l@{\quad}l} 2x+3 & \hbox{if }x\lt 2 \\[3pt] 9-x & \hbox{if }x\geq 2 \end{array} \right. at c=2

\mathop{\lim\limits_{x \to 2^ - }} f(x) = 7,\mathop{\lim\limits_{x \to 2^ + }} f(x) = 7, \mathop{\lim\limits_{x \to 2}} f(x) = 7

142

  1. f(x)=\left\{ \begin{array}{c@{ }c} 3x+1 & \hbox{if }x \lt 3 \\[3pt] 10 & \hbox{if }x=3 \\[3pt] 4x-2 & \hbox{if }x \gt 3 \end{array} \right. at c=3

In Problems 31-36, determine whether f is continuous at c.

  1. f(x)=\left\{ \begin{array}{c@{}c} 5x-2 & \hbox{if }x \lt 1 \\[3pt] 5 & \hbox{if }x=1 \\[3pt] 2x+1 & \hbox{if }x \gt 1 \end{array} \right. at c=1

f is not continuous at c = 1.

  1. f(x)=\left\{ \begin{array}{c@{}c} x^{2} & \hbox{if }x \lt -1 \\[3pt] 2 & \hbox{if }x=-1 \\[3pt] -3x-2 & \hbox{if }x \gt -1 \end{array} \right. at c=-1

  1. f(x)=\left\{ \begin{array}{c@{}l} 4-3x^{2} & \hbox{if }x\lt0 \\[3pt] 4 & \hbox{if }x=0 \\[3pt] \sqrt{16-x^{2}} & \hbox{if }0 \lt x\leq 4 \end{array} \right. at c=0

f is continuous at c = 0.

  1. f(x)=\left\{ \begin{array}{c@{}l} \sqrt{4+x} & \hbox{if }-4\leq x\leq 4 \\[3pt] \sqrt{\dfrac{x^{2}-16}{x-4}} & \hbox{if }x>4 \end{array} \right. at c=4

  1. f(x) = \lfloor \,2x\rfloor at c=\dfrac{1}{ 2}

f is not continuous at c=\raise.5ex\hbox{\(\scriptstyle 1\)}\kern-.1em/ \kern-.15em\lower.25ex\hbox{\(\scriptstyle 2\)}.

  1. f(x)=|\,x-5\,| at c=5

    1. (a) Find the average rate of change of f(x)= 2x^2 -5x from 1 to x.
    2. (b) Find the limit as x approaches 1 of the average rate of change found in (a).

  1. (a) 2x - 3
  2. (b) -1
  1. A function f is defined on the interval [-1,1] with the following properties: f is continuous on [-1,1] except at 0, negative at -1, positive at 1, but with no zeros. Does this contradict the Intermediate Value theorem?

In Problems 39-43 find all values x for which f(x) is continuous.

  1. f(x)=\dfrac{x}{x^{3}-27}

f is continuous on the set \{ x \vert x \ne 3 {\}}.

  1. f(x)=\dfrac{x^{2}-3}{x^{2}+5x+6}

  1. f(x)=\dfrac{2x+1}{x^{3}+4x^{2}+4x}

f is continuous on the set \{ x \vert x \ne -2, x \ne 0 \}.

  1. f(x) =\sqrt{x-1}

  1. f(x) =2^{-x}

f is continuous on the set of all real numbers.

  1. Use the Intermediate Value Theorem to determine whether 2x^{3}+3x^{2}-23x-42=0 has a zero in the interval [3,4].

In Problems 45 and 46, use the Intermediate Value Theorem to approximate the zero correct to three decimal places.

  1. f(x) =8x^{4}-2x^{2}+5x-1 on the interval \left[0,1\right].

0.215

  1. f(x) =3x^{3}-10x+9; zero between -3 and -2.

  1. Find {\lim\limits_{x\rightarrow 0^{+}}}\dfrac{|\,x\,|}{x}(1-x) and {\lim\limits_{x\rightarrow 0^{-}}}\dfrac{|\,x\,|}{x}(1-x). What can you say about {\lim\limits_{x\rightarrow 0}}\dfrac{|x|}{x} (1-x)?

\mathop {\lim\limits_{x \to 0^ + }} \dfrac{| x |}{x}(1 - x) = 1, \mathop{\lim \limits_{x \to 0^ - }} \dfrac{| x |}{x}(1 - x) = - 1, \mathop{\lim \limits_{x \to 0}} \dfrac{| x |}{x}(1 - x) does not exist.

  1. Find {\lim\limits_{x\rightarrow 2}}\left( \dfrac{x^{2}}{x-2}- \dfrac{2x}{x-2}\right). Then comment on the statement that this limit is given by \lim\limits_{x\rightarrow 2}\dfrac{x^{2}}{x-2}-\lim\limits_{x\rightarrow 2}\dfrac{2x}{x-2}.

  1. Find {\lim\limits_{h\rightarrow 0}} \dfrac{f(x+h)-f(x)}{h} for f(x)=\sqrt{x}.

\dfrac{1}{2\sqrt x}

  1. For \lim\limits_{x\rightarrow 3}(2x+1)=7, find the largest possible \delta that “works” for \epsilon =0.01.

In Problems 51-60, find each limit.

  1. \lim\limits_{x\rightarrow 0}\cos (tan x)

1

  1. \lim\limits_{x\rightarrow 0}{\dfrac{{\sin {\dfrac{{x}}{{4}}}}}{{x}}}

  1. \lim\limits_{x\rightarrow 0}\,\dfrac{\tan (3x) }{\tan ( 4x) }

\dfrac{3}{4}

  1. {\lim\limits_{x\rightarrow 0}}\dfrac{\cos {\dfrac{x}{3}-1}}{x}

  1. \lim\limits_{x\rightarrow 0}\left( \dfrac{\cos x-1}{x}\right) ^{10}

0

  1. \lim\limits_{x\rightarrow 0}{\dfrac{{e^{4x}-1}}{e^{x}{-1}}}

  1. \lim\limits_{x\rightarrow \pi /2^{+}}\tan x

-\infty

  1. \lim\limits_{x\rightarrow -3}\dfrac{2+x}{( x+3) ^{2}}

  1. \lim\limits_{x\rightarrow \infty }\dfrac{3x^{3}-2x+1}{x^{3}-8}

3

  1. \lim\limits_{x\rightarrow \infty }\dfrac{3x^{4}+x}{2x^{2}}

In Problems 61 and 62, find any vertical and horizontal asymptotes of f.

  1. f(x)=\dfrac{4x-2}{x+3}

x = -3 is a vertical asymptote. y = 4 is a horizontal asymptote.

  1. f(x)=\dfrac{2x}{x^{2}-4}

  1. Let f( x) =\left\{ \begin{array}{c@{}c} \dfrac{\tan x}{2x} & \hbox{if }x\neq 0 \\ \dfrac{1}{2} & \hbox{if }x=0 \end{array} \right.. Is f continuous at 0?

Yes

  1. Let f( x) =\left\{ \begin{array}{c@{}c} \dfrac{\sin ( 3x) }{x} & \hbox{if }x\neq 0 \\ 1 & \hbox{if }x=0 \end{array} \right.. Is f continuous at 0?

  1. The function f( x) =\dfrac{\cos \left( \pi x+\dfrac{\pi }{2}\right) }{x} is not defined at 0. Decide how to define f( 0) so that f is continuous at 0.

f(0) = -\pi

  1. Use an \epsilon - \delta argument to show that the statement \lim\limits_{x\rightarrow -3} (x^{2}-9) =-18 is false.

    1. (a) Sketch a graph of a function f that has the following properties: \begin{eqnarray*} &&\\[-30pt] &&f(-1)=0,\quad \lim_{x\rightarrow \infty }f(x)=2,\quad \lim_{x\rightarrow -\infty }f(x)=2,\\[5pt] &&\lim_{x\rightarrow 4^{-}}f(x)=-\infty, \quad \lim_{x\rightarrow 4^{+}}f(x)=\infty \end{eqnarray*}

  1. (a) Answers will vary.
    1. (a) Find the domain and the intercepts (if any) of R( x) =\dfrac{2x^{2}-5x+2}{5x^{2}-x-2}.
    2. (b) Discuss the behavior of the graph of R at numbers where R is not defined.
    3. (c) Find any vertical or horizontal asymptotes of the function R.
  1. If 1-x^{2}\leq f(x)\leq cos x for all x in the interval -\dfrac{\pi }{2} \lt x \lt \dfrac{\pi }{2}, show that \lim\limits_{x\rightarrow 0}f(x)=1.

See Student Solution Manual.