77
Concepts and Vocabulary
Multiple Choice The limit as \(x\) approaches \(c\) of a function \(f\) is written symbolically as [(a) \(\lim f(x)\), (b) \(\lim\limits_{c \to x} f (x)\), (c) \(\lim\limits_{x\to c} f(x)\)]
True or False The tangent line to the graph of \(f\) at a point \(P=(c,f(c))\) is the limiting position of the secant lines passing through \(P\) and a point \((x,f(x))\), \(x\neq c,\) as \(x\) moves closer to \(c\).
True or False If \(f\) is not defined at \(x=c\), then \(\lim\limits_{x\rightarrow c}f(x)\) does not exist.
True or False The limit \(L\) of a function \(y=f(x)\) as \(x\) approaches the number \(c\) depends on the value of \(f\) at \(c\).
If \(\lim\limits_{x\rightarrow c}\dfrac{f(x)-f(c)}{x-c}\) exists, it equals the ______ of the tangent line to the graph of \(f\) at the point \((c,f(c))\).
True or False The limit of a function \(y=f(x)\) as \(x\) approaches a number \(c\) equals \(L\) if at least one of the one-sided limits as \(x\) approaches \(c\) equals \(L\).
Skill Building
In Problems 7-12, complete each table and investigate the limit.
\(\lim\limits_{x\rightarrow 1}2x\)
\(\underrightarrow{x~\hbox{approaches 1 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 1 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(0.9\) | \(0.09\) | \(0.999\) | \(\rightarrow\) | \(1\) | \(\leftarrow\) | \(1.001\) | \(1.01\) | \(1.1\) | ||
\(f(x)=2x\) |
\(\lim\limits_{x\rightarrow 2} (x+3)\)
\(\underrightarrow{x~\hbox{approaches 2 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 2 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(1.9\) | \(1.99 \) | \(1.999\) | \(\rightarrow\) | 2 | \(\leftarrow \) | \(2.001\) | \(2.01\) | \(2.1\) | ||
\(f(x)=x+3\) |
\(\lim\limits_{x\rightarrow 0}( x^{2}+2)\)
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-0.1\) | \(-0.01\) | \(-0.001\) | \(\rightarrow \) | \(0\) | \(\leftarrow \) | \(0.001\) | \(0.01\) | 0.1 | ||
\(f(x)=x^{2}+2\) |
\(\lim\limits_{x\rightarrow -1} ( x^{2}-2)\)
\(\underrightarrow{x~\hbox{approaches –1 from the left}}\) | \(\underleftarrow{x~\hbox{approaches –1 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-1.1\) | \(-1.01\) | \(-1.001\) | \(\rightarrow \) | \(-1\) | \(\leftarrow \) | \(-0.999\) | \(-0.99\) | \(-0.9\) | ||
\(f(x)=x^{2}-2\) |
\(\lim\limits_{x\rightarrow -3}\dfrac{x^{2}-9}{x+3}\)
\(\underrightarrow{x~\hbox{approaches –3 from the left}}\) | \(\underleftarrow{x~\hbox{approaches –3 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-3.5\) | \(-3.1\) | \(-3.01\) | \(\rightarrow \) | \(-3\) | \(\leftarrow \) | \(-2.99\) | \(-2.9\) | \(-2.5\) | ||
\(f(x)=\dfrac{x^{2}-9}{x+3}\) |
\(\lim\limits_{x\rightarrow -1}\dfrac{x^{3}+1}{x+1}\)
\(\underrightarrow{x~\hbox{approaches –1 from the left}}\) | \(\underleftarrow{x~\hbox{approaches –1 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-1.1\) | \(-1.01\) | \(-1.001\) | \(\rightarrow \) | \(-1\) | \(\leftarrow \) | \(-0.999\) | \(-0.99\) | \(-0.9\) | ||
\(f(x)=\dfrac{x^{3}+1}{x+1}\) |
In Problems 13-16, use technology to complete the table and investigate the limit.
\(\lim\limits_{x\rightarrow 0}\dfrac{2-2e^{x}}{x}\)
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-0.2\) | \(-0.1\) | \(-0.01\) | \(\rightarrow \) | 0 | \(\leftarrow \) | \(0.01\) | 0.1 | \(0.2\) | ||
\(f(x)=\dfrac{2-2e^{x}}{x}\) |
\(\lim\limits_{x\rightarrow 1}\dfrac{\ln x}{x-1}\)
\(\underrightarrow{x~\hbox{approaches 1 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 1 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(0.9\) | \(0.99\) | \(0.999\) | \(\rightarrow \) | \(1\) | \(\leftarrow \) | \(1.001\) | \(1.01\) | \(1.1\) | ||
\(f(x)=\dfrac{\ln x}{x-1}\) |
\(\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}\), where \(x\) is measured in radians
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) (in radians) | \(-0.2\) | \(-0.1\) | \(-0.01\) | \(\rightarrow \) | \(0\) | \(\leftarrow \) | \(0.01\) | 0.1 | \(0.2\) | ||
\(f(x)=\dfrac{1-\cos x}{x}\) |
\(\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{1+\tan x}\), where \(x\) is measured in radians
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) (in radians) | \(-0.2\) | \(-0.1\) | \(-0.01\) | \(\rightarrow \) | \(0\) | \(\leftarrow \) | \(0.01\) | 0.1 | \(0.2\) | ||
\(f(x)=\dfrac{\sin x}{1+\tan x}\) |
78
In Problems 17—20, use the graph to investigate
In Problems 21—28, use the graph to investigate \(\lim\limits_{x\rightarrow c}f(x)\). If the limit does not exist, explain why.
In Problems 29—36, use a graph to investigate \(\lim\limits_{x\rightarrow c} f(x)\) at the number \(c.\)
\(f(x)=\left\{ \begin{array}{l@{\quad}rl} 2x+5 & \hbox{if} & x\leq 2 \\[1pt] 4x+1 & \hbox{if} & x\gt 2 \end{array} \right.\) at \(c=2\)
\(f(x)=\left\{ \begin{array}{c@{\quad}rl} 2x+1 & \hbox{if} & x\leq 0 \\[1pt] 2x & \hbox{if} & x\gt 0 \end{array} \right.\) at \(c=0\)
\(f(x)=\left\{ \begin{array}{c@{\quad}rl} 3x-1 & \hbox{if} & x\lt 1 \\[1pt] 4 & \hbox{if} & x=1 \\[1pt] 4x & \hbox{if} & x\gt 1 \end{array} \right.\) at \(c=1\)
\(f(x)=\left\{ \begin{array}{c@{\quad}rl} x+2 & \hbox{if} & x\lt 2 \\[1pt] 4 & \hbox{if} & x=2 \\[1pt] x^{2} & \hbox{if} & x\gt 2 \end{array} \right.\) at \(c=2\)
\(f(x)=\left\{ \begin{array}{c@{\quad}rl} 2x^{2} & \hbox{if} & x\lt 1 \\[1pt] 3x^{2}-1 & \hbox{if} & x\gt 1 \end{array} \right.\) at \(c=1\)
\(f(x)=\left\{ \begin{array}{c@{}rl} x^{3} & \hbox{if} & x\lt -1 \\[1pt] x^{2}-1 & \hbox{if} & x>-1 \end{array} \right.\) at \(c=-1\)
\(f(x)=\left\{ \begin{array}{c@{}rl} x^{2} & \hbox{if} & x\leq 0 \\[1pt] 2x+1 & \hbox{if} & x>0 \end{array} \right. \) at \(c=0\)
\(f(x)=\left\{ \begin{array}{c@{}rl} x^{2} & \hbox{if} & x\lt 1 \\[1pt] 2 & \hbox{if} & x=1 \\[1pt] -3x+2 & \hbox{if} & x>1 \end{array} \right.\) at \(c=1\)
Applications and Extensions
In Problems 37—40, sketch a graph of a function with the given properties. Answers will vary.
\(\lim\limits_{x\rightarrow 2}f(x) =3;\) \(\lim\limits_{x\rightarrow 3^{-}}f(x) =3;\) \(\lim\limits_{x\rightarrow 3^{+}}f(x) =1;\) \(f(2) =3;\) \(f(3) =1\)
\(\lim\limits_{x\rightarrow -1}f(x) =0;\) \( \lim\limits_{x\rightarrow 2^{-}}f(x) =-2;\) \( \lim\limits_{x\rightarrow 2^{+}}f(x) =-2;\) \( f(-1)\) is not defined; \(f(2) =-2\)
\(\lim\limits_{x\rightarrow 1}f(x) =4;\) \( \lim\limits_{x\rightarrow 0^{-}}f(x) =-1;\) \( \lim\limits_{x\rightarrow 0^{+}}f(x) =0;\) \(f(0) =-1;\) \(f(1) =2\)
\(\lim\limits_{x\rightarrow 2}f(x) =2; \lim\limits_{x\rightarrow -1}f(x) =0;\) \(\lim\limits_{x\rightarrow 1}f(x) =1;\) \(f(-1) =1;\) \(f(2) =3\)
79
In Problems 41—50, use either a graph or a table to investigate each limit.
\(\lim\limits_{x\rightarrow 5^{+}}\dfrac{|x-5|}{x-5}\)
\(\lim\limits_{x\rightarrow 5^{-}}\dfrac{|x-5|}{x-5}\)
\(\lim\limits_{x\rightarrow \left(\frac{1}{2}\right) ^{-}}\lfloor 2x\rfloor\)
\({\lim\limits_{x\rightarrow \left(\frac{1}{2}\right) ^{+}}}\lfloor 2x\rfloor\)
\({\lim\limits_{x\rightarrow \left(\frac{2}{3}\right) ^{-}}}\lfloor 2x\rfloor\)
\({\lim\limits_{x\rightarrow \left(\frac{2}{3}\right) ^{+}}}\lfloor 2x\rfloor\)
\({\lim\limits_{x\rightarrow 2^{+}}}\ \sqrt{{|}x{|}-x}\)
\({\lim\limits_{x\rightarrow 2^{-}}}\ \sqrt{{|}x{|}-x}\)
\({\lim\limits_{x\rightarrow 2^{+}}}\ \sqrt[3]{\lfloor x\rfloor -x}\)
\({\lim\limits_{x\rightarrow 2^{-}}}\ \sqrt[3]{\lfloor x\rfloor -x}\)
Slope of a Tangent Line For \(f(x)=3x^{2}\):
Slope of a Tangent Line For \(f(x)=x^{3}\):
Slope of a Tangent Line For \(f(x)=\dfrac{1}{2}x^{2}-1\):
h | -0.5 | -0.1 | -0.001 | 0.001 | 0.1 | 0.5 |
\(m_{\sec }\) |
Slope of a Tangent Line For \(f(x)=x^{2}-1\):
h | -0.1 | -0.01 | -0.001 | -0.0001 | 0.0001 | 0.001 | 0.01 | 0.1 |
msec |
80
First-Class Mail As of January 2013, the U.S. Postal Service charged $0.46 postage for first-class letters weighing up to and including 1 ounce, plus a flat fee of $0.20 for each additional or partial ounce up to and including 3.5 ounces. First-class letter rates do not apply to letters weighing more than 3.5 ounces.
First-Class Mail As of January 2013, the U.S. Postal Service charged $0.92 postage for first-class retail flats (large envelopes) weighing up to and including 1 ounce, plus a flat fee of $0.20 for each additional or partial ounce up to and including 13 ounces. First-class rates do not apply to flats weighing more than 13 ounces.
Source: U.S. Postal Service Notice 123.
Correlating Student Success to Study Time Professor Smith claims that a student's final exam score is a function of the time \(t\) (in hours) that the student studies. He claims that the closer to seven hours one studies, the closer to 100% the student scores on the final. He claims that studying significantly less than seven hours may cause one to be underprepared for the test, while studying significantly more than seven hours may cause ''burnout.''
Source: Submitted by the students of Millikin University.
The definition of the slope of the tangent line to the graph of \(y=f(x)\) at the point \((c,f(c))\) is \(m_{\tan }=\lim\limits_{x\rightarrow c}\dfrac{f(x) -f(c) }{x-c}\). Another way to express this slope is to define a new variable \(h=x-c\). Rewrite the slope of the tangent line \(m_{\tan }\) using \(h\) and \(c\).
If \(f(2) =6,\) can you conclude anything about \(\lim\limits_{x\rightarrow 2}f(x) ?\) Explain your reasoning.
If \(\lim\limits_{x\rightarrow 2}f(x) =6,\) can you conclude anything about \(f(2) ?\) Explain your reasoning.
The graph of \(f(x) ={\dfrac{{x-3}}{{3-x}}}\) is a straight line with a point punched out.
Challenge Problems
For Problems 67—70, investigate each of the following limits. \[ f(x) ={\left\{ \begin{array}{c@{\qquad}l} 1 & \hbox{if }x\hbox{ is an integer} \\ 0 & \hbox{if }x\hbox{ is not an integer} \end{array} \right. } \]
\(\lim\limits_{x\rightarrow 2}f(x)\)
\(\lim\limits_{x\rightarrow 1/2}f(x)\)
\(\lim\limits_{x\rightarrow 3}f(x)\)
\(\lim\limits_{x\rightarrow 0}f(x)\)