Printed Page 9999
252
In Problems 1–42, find the derivative of each function. When a, b, or n appear, they are constants.
y=(ax+b)n
an(ax+b)n−1
y=√2ax
y=x√1−x
(1−x)1/2−x2(1−x)1/2
y=1√x2+1
y=(x2+4)3/2
3x(x2+4)1/2
F(x)=x2√x2−1
z=√2ax−x2x
−ax√2ax−x2
y=√x+3√x
y=(ex−x)5x
(ex−x)5x(5ln(ex−x)+5x(ex−1)ex−x)
ϕ(x)=(x2−a2)3/2√x+a
f(x)=x2(x−1)2
−2x(x−1)3
u=(b1/2−x1/2)2
y=xsec(2x)
sec(2x)+2xsec(2x)tan(2x)
u=cos3x
y=√a2sin(xa)
acosxa2(a2sinxa)1/2
ϕ(z)=√1+sinz
u=sinv−13sin3v
cosv−sin2vcosv=cos3v
y=tan√πx
y=(1.05)x
1.05xln1.05
v=ln(y2+1)
z=ln(√u2+25−u)
−1√u2+25
y=x2+2x
y=ln[sin(2x)]
2cot(2x)
f(x)=e−xsin(2x+π)
g(x)=ln(x2−2x)
2x−2x2−2x
y=lnx2+1x2−1
y=e−xlnx
e−x(−lnx+1x)
w=ln(√x+7−√x)
y=112ln(x√144−x2)
12x(144−x2)
y=ln(tan2x)
f(x)=ex(x2+4)(x−2)
ex(x2+4)(x−2)[1+2xx2+4−1x−2]
y=sin−1(x−1)+√2x−x2
y=2√x−2tan−1√x
√x1+x
y=4tan−1x2+x
y=sin−1(2x−1)
1√x−x2
y=x2tan−11x
y=xtan−1x−ln√1+x2
tan−1(x)
y=√1−x2(sin−1x)
y=tanhx2+2x4+x2
12sech2(x/2)+8−2x2(4+x2)2
y=xsinhx
y=√sinhx
coshx2(sinhx)1/2
y=sinh−1ex
In Problems 43–48, find y′=dydx using implicit differentiation.
x=y5+y
15y4+1
x=cos5y+cosy
lnx+lny=xcosy
y(xcosy−1)x(1+xysiny)
tan(xy)=x
y=x+sin(xy)
1+ycos(xy)1−xcos(xy)
x=ln(cscy+coty)
In Problems 49–52, find y′ and y′′.
xy+3y2=10x
y′=10−y6y+x; y″
y^{3}+y=x^{2}
xe^{y}=4x^{2}
y'=\dfrac{8x-e^y}{xe^y}; y''=\dfrac{-64 x^2+8 x e^{y}+e^{2 y}}{x^2e^{2y}}
\ln (x+y) =8x
The function f(x) =e^{2x} has an inverse function g. Find g^\prime (1).
\dfrac{1}{2}
The function f(x) =\sin x defined on the restricted domain \left[ -\frac{\pi }{2},\,\frac{\pi }{2}\right] has an inverse function g. Find g^\prime \left(\frac{1}{2}\right).
In Problems 55–56, express each limit in terms of the number e.
\lim\limits_{n\rightarrow \infty }\left( 1+\frac{2}{5n}\right) ^{n}
e^{2/5}
\lim\limits_{h\rightarrow 0} ( 1+3h) ^{2/h}
In Problems 57 and 58, find the exact value of each expression.
\sinh 0
0
\cosh ( \ln 3)
In Problems 59 and 60, establish each identity.
\sinh x+\cosh x=e^{x}
See Student Solutions Manual.
\tanh (x+y) =\frac{\tanh x+\tanh y}{1+\tanh x\tanh y}
If f(x)=\sqrt{1-\sin ^{2}x}, find the domain of f^\prime.
x\not=(2k-1)\dfrac{\pi}{2}, k an integer
If f(x)=x^{1/2}(x-2)^{3/2} for all x ≥ 2, find the domain of f^\prime.
Let f be the function defined by f(x)=\sqrt{1+6x}.
Tangent and Normal Lines Find equations of the tangent and normal lines to the graph of y=x\sqrt{x+(x-1)^{2}} at the point (2,\,2 \sqrt{3}).
Find the differential dy if x^{3}+2y^{2}=x^{2}y.
dy={2xy-3x^2\over 4y-x^2}\,dx
Measurement Error If p is the period of a pendulum of length L, the acceleration due to gravity may be computed by the formula g=\frac{(4\pi ^{2}L)}{p^{2}}. If L is measured with negligible error, but a 2{\%} error may occur in the measurement of p, what is the approximate percentage error in the computation of g?
Linear Approximation Find a linear approximation to \hbox{\(y=x+\ln x\) at \(x=1\).}
L(x)=2x-1
Measurement Error If the percentage error in measuring the edge of a cube is 5{\%}, what is the percentage error in computing its volume?
For the function f(x) =\tan x:
For the function f(x) =\ln x:
If f(x)=(x^{2}+1)^{(2-3x)}, find f^\prime (1).
-\dfrac{1}{2} (1+\ln 8)
Find \lim\limits_{x\rightarrow 2}\frac{\ln x-\ln 2}{x-2}.
Find y^{\prime } at x=\frac{\pi }{2} and y=\pi if x\sin y+y\cos x=0.
-2
In Problems 74–77, find the Taylor Polynomial P_{n}( x) for f at x_{0} for the given n and x_{0}.
f(x)=e^{2x};\quad n=4, x_{0}=3
f(x)=\tan x;\quad n=4, x_{0}=0
P_4(x)=\dfrac{x^3}{3}+x
f(x)=\frac{1}{1+x}; \quad n=4, x_{0}=1
f(x)=\ln x; n=6, x_{0}=2
P_6(x)=-\dfrac{1}{384} (x-2)^6+\dfrac{1}{160} (x-2)^5-\dfrac{1}{64} (x-2)^4+\dfrac{1}{24} (x-2)^3-\dfrac{1}{8} (x-2)^2+\dfrac{x-2}{2}+\ln 2
In Problems 78 and 79, for each function:
f(x)=8x^{4}-2x^{2}+5x-1, interval: (0,1). Let c_{1}=0.5.
f(x)=2-x+\sin x, interval: \left(\frac{\pi }{2},\pi \right). Let c_{1}=\frac{\pi}{2}.
Tangent Line Find an equation of the tangent line to the graph of 4xy-y^{2}=3 at the point ( 1, 3).
y=6x-3