Processing math: 38%

REVIEW EXERCISES

Printed Page 9999

252

In Problems 1–42, find the derivative of each function. When a, b, or n appear, they are constants.

  1. y=(ax+b)n

an(ax+b)n1

  1. y=2ax

  1. y=x1x

(1x)1/2x2(1x)1/2

  1. y=1x2+1

  1. y=(x2+4)3/2

3x(x2+4)1/2

  1. F(x)=x2x21

  1. z=2axx2x

ax2axx2

  1. y=x+3x

  1. y=(exx)5x

(exx)5x(5ln(exx)+5x(ex1)exx)

  1. ϕ(x)=(x2a2)3/2x+a

  1. f(x)=x2(x1)2

2x(x1)3

  1. u=(b1/2x1/2)2

  1. y=xsec(2x)

sec(2x)+2xsec(2x)tan(2x)

  1. u=cos3x

  1. y=a2sin(xa)

acosxa2(a2sinxa)1/2

  1. ϕ(z)=1+sinz

  1. u=sinv13sin3v

cosvsin2vcosv=cos3v

  1. y=tanπx

  1. y=(1.05)x

1.05xln1.05

  1. v=ln(y2+1)

  1. z=ln(u2+25u)

1u2+25

  1. y=x2+2x

  1. y=ln[sin(2x)]

2cot(2x)

  1. f(x)=exsin(2x+π)

  1. g(x)=ln(x22x)

2x2x22x

  1. y=lnx2+1x21

  1. y=exlnx

ex(lnx+1x)

  1. w=ln(x+7x)

  1. y=112ln(x144x2)

12x(144x2)

  1. y=ln(tan2x)

  1. f(x)=ex(x2+4)(x2)

ex(x2+4)(x2)[1+2xx2+41x2]

  1. y=sin1(x1)+2xx2

  1. y=2x2tan1x

x1+x

  1. y=4tan1x2+x

  1. y=sin1(2x1)

1xx2

  1. y=x2tan11x

  1. y=xtan1xln1+x2

tan1(x)

  1. y=1x2(sin1x)

  1. y=tanhx2+2x4+x2

12sech2(x/2)+82x2(4+x2)2

  1. y=xsinhx

  1. y=sinhx

coshx2(sinhx)1/2

  1. y=sinh1ex

In Problems 43–48, find y=dydx using implicit differentiation.

  1. x=y5+y

15y4+1

  1. x=cos5y+cosy

  1. lnx+lny=xcosy

y(xcosy1)x(1+xysiny)

  1. tan(xy)=x

  1. y=x+sin(xy)

1+ycos(xy)1xcos(xy)

  1. x=ln(cscy+coty)

In Problems 49–52, find y and y.

  1. xy+3y2=10x

y=10y6y+x; y

  1. y^{3}+y=x^{2}

  1. xe^{y}=4x^{2}

y'=\dfrac{8x-e^y}{xe^y}; y''=\dfrac{-64 x^2+8 x e^{y}+e^{2 y}}{x^2e^{2y}}

  1. \ln (x+y) =8x

  1. The function f(x) =e^{2x} has an inverse function g. Find g^\prime (1).

\dfrac{1}{2}

  1. The function f(x) =\sin x defined on the restricted domain \left[ -\frac{\pi }{2},\,\frac{\pi }{2}\right] has an inverse function g. Find g^\prime \left(\frac{1}{2}\right).

In Problems 55–56, express each limit in terms of the number e.

  1. \lim\limits_{n\rightarrow \infty }\left( 1+\frac{2}{5n}\right) ^{n}

e^{2/5}

  1. \lim\limits_{h\rightarrow 0} ( 1+3h) ^{2/h}

In Problems 57 and 58, find the exact value of each expression.

  1. \sinh 0

0

  1. \cosh ( \ln 3)

In Problems 59 and 60, establish each identity.

  1. \sinh x+\cosh x=e^{x}

See Student Solutions Manual.

  1. \tanh (x+y) =\frac{\tanh x+\tanh y}{1+\tanh x\tanh y}

  1. If f(x)=\sqrt{1-\sin ^{2}x}, find the domain of f^\prime.

x\not=(2k-1)\dfrac{\pi}{2}, k an integer

  1. If f(x)=x^{1/2}(x-2)^{3/2} for all x ≥ 2, find the domain of f^\prime.

  1. Let f be the function defined by f(x)=\sqrt{1+6x}.

    1. (a) What are the domain and the range of f?
    2. (b) Find the slope of the tangent line to the graph of f at x=4.
    3. (c) Find the y-intercept of the tangent line to the graph of f at x=4.
    4. (d) Give the coordinates of the point on the graph of f where the tangent line is parallel to the line y=x+12.

  1. (a) Domain: \left\{x|x\ge -\dfrac{1}{6}\right\}; Range: \{y|y\ge 0\}
  2. (b) \dfrac{3}{5}
  3. (c) \dfrac{13}{5}
  4. (d) \left(\dfrac{4}{3},3\right)
  1. Tangent and Normal Lines Find equations of the tangent and normal lines to the graph of y=x\sqrt{x+(x-1)^{2}} at the point (2,\,2 \sqrt{3}).

  1. Find the differential dy if x^{3}+2y^{2}=x^{2}y.

dy={2xy-3x^2\over 4y-x^2}\,dx

  1. Measurement Error If p is the period of a pendulum of length L, the acceleration due to gravity may be computed by the formula g=\frac{(4\pi ^{2}L)}{p^{2}}. If L is measured with negligible error, but a 2{\%} error may occur in the measurement of p, what is the approximate percentage error in the computation of g?

  1. Linear Approximation Find a linear approximation to \hbox{\(y=x+\ln x\) at \(x=1\).}

L(x)=2x-1

  1. Measurement Error If the percentage error in measuring the edge of a cube is 5{\%}, what is the percentage error in computing its volume?

  1. For the function f(x) =\tan x:

    1. (a) Find the differential dy and \Delta y when x=0.
    2. (b) Compare dy to \Delta y when x=0 and (i) \Delta x=0.5, (ii) \Delta x=0.1, and (iii) \Delta x=0.01.

  1. (a) dy=dx; \Delta y=\tan(\Delta x)
  2. (b)
    1. dy=0.5, \Delta y\approx 0.546;
    2. dy=0.1, \Delta y\approx 0.100;
    3. dy=0.01, \Delta y\approx 0.010
  1. For the function f(x) =\ln x:

    1. (a) Find the differential dy and \Delta y when x=1.
    2. (b) Compare dy to \Delta y when x=1 and (i) \Delta x=0.5, (ii) \Delta x=0.1, and (iii) \Delta x=0.01.
  1. If f(x)=(x^{2}+1)^{(2-3x)}, find f^\prime (1).

-\dfrac{1}{2} (1+\ln 8)

  1. Find \lim\limits_{x\rightarrow 2}\frac{\ln x-\ln 2}{x-2}.

  1. Find y^{\prime } at x=\frac{\pi }{2} and y=\pi if x\sin y+y\cos x=0.

-2

In Problems 74–77, find the Taylor Polynomial P_{n}( x) for f at x_{0} for the given n and x_{0}.

  1. f(x)=e^{2x};\quad n=4, x_{0}=3

  1. f(x)=\tan x;\quad n=4, x_{0}=0

P_4(x)=\dfrac{x^3}{3}+x

  1. f(x)=\frac{1}{1+x}; \quad n=4, x_{0}=1

  1. f(x)=\ln x; n=6, x_{0}=2

P_6(x)=-\dfrac{1}{384} (x-2)^6+\dfrac{1}{160} (x-2)^5-\dfrac{1}{64} (x-2)^4+\dfrac{1}{24} (x-2)^3-\dfrac{1}{8} (x-2)^2+\dfrac{x-2}{2}+\ln 2

In Problems 78 and 79, for each function:

  1. (a) Use the Intermediate Value Theorem to confirm that a zero exists in the given interval.
  2. (b) Use Newton’s Method to find c_{3}, the third approximation to the real zero.

  1. f(x)=8x^{4}-2x^{2}+5x-1, interval: (0,1). Let c_{1}=0.5.

  1. f(x)=2-x+\sin x, interval: \left(\frac{\pi }{2},\pi \right). Let c_{1}=\frac{\pi}{2}.

  1. (a) See Student Solutions Manual.
  2. (b) 2.568
    1. (a) Use the Intermediate Value Theorem to confirm that the function f(x) =2\cos x-e^{x} has a zero in the interval (0,1).
    2. (b) Use graphing technology with Newton’s Method to find c_{5}, the fifth approximation to the real zero. Use the midpoint of the interval for the first approximation c_{1}.
  1. Tangent Line Find an equation of the tangent line to the graph of 4xy-y^{2}=3 at the point ( 1, 3).

y=6x-3