Concepts and Vocabulary
True or False \(\dfrac{f(x) }{g(x) }\) is an indeterminate form at \(c\) of the type \(\dfrac{0}{0}\) if \(\lim\limits_{x\rightarrow c}\dfrac{f(x) }{g(x) }\) does not exist.
True or False If \(\dfrac{f(x) }{g(x) }\) is an indeterminate form at \(c\) of the type \(\dfrac{0}{0},\) then L’Hôpital’s Rule states that \(\lim\limits_{x\rightarrow c}\dfrac{f(x) }{g(x) }= \lim\limits_{x\rightarrow c}\left[ \dfrac{d}{dx}\left( \dfrac{f(x) }{g(x) }\right) \right]\).
True or False \(\dfrac{1}{x}\) is an indeterminate form at \(0\).
True or False \(x\ln x\) is not an indeterminate form at \(0^{+}\) because \(\lim\limits_{x\rightarrow 0^{+}}x=0\) and \(\lim\limits_{x\rightarrow 0^{+}}\ln x=-\infty\), and \(0\cdot -\infty =0\).
In your own words, explain why \(\infty -\infty \) is an indeterminate form, but \(\infty +\infty \) is not an indeterminate form.
In your own words, explain why \(0\cdot \infty \neq 0.\)
Skill Building
In Problems 7–26:
\(\dfrac{1-e^{x}}{x}, \) \(c=0\)
\(\dfrac{1-e^{x}}{x-1}\), \(c=0\)
\(\dfrac{e^{x}}{x}\), \(c=0\)
\(\dfrac{e^{x}}{x},\) \(c=\infty \)
\(\dfrac{\ln x}{x^{2}}\), \(c=\infty \)
\(\dfrac{\ln ( x+1) }{e^{x}-1},\) \(c=0\)
\(\dfrac{\sec x}{x},\)\(c=0\)
\(\dfrac{x}{\sec x-1},\) \(c=0\)
\(\dfrac{\sin x( 1-\cos x) }{x^{2}},\) \(c=0\)
\(\dfrac{\sin x-1}{\cos x}\), \(c=\dfrac{\pi }{2}\)
\(\dfrac{\tan x-1}{\sin ( 4x-\pi ) },\) \(c=\dfrac{\pi }{4}\)
\(\dfrac{e^{x}-e^{-x}}{1-\cos x},\)\(c=0\)
306
\(x^{2}e^{-x},\) \(c=\infty \)
\(x\;\cot\;x,\) \(c=0\)
\(\csc \dfrac{x}{2}-\cot \dfrac{x}{2},\) \(c=0\)
\( \dfrac{x}{x-1}+\dfrac{1}{\ln x},\) \(c=1\)
\(\left( \dfrac{1}{x^{2}}\right) ^{\sin x},\) \(c=0\)
\((e^{x}+x)^{1/x},\) \(c=0\)
\(( x^{2}-1) ^{x},\) \(c=0\)
\(( \sin x) ^{x},\) \(c=0\)
In Problems 27–42, identify each quotient as an indeterminate form of the type \(\dfrac{0}{0}\) or \(\dfrac{\infty }{\infty }.\) Then find the limit.
\(\lim\limits_{x\rightarrow 2}\dfrac{x^{2}+x-6}{x^{2}-3x+2}\)
\(\lim\limits_{x\rightarrow 1}\dfrac{2x^{3}+5x^{2}-4x-3}{x^{3}+x^{2}-10x+8}\)
\(\lim\limits_{x\rightarrow 1}\dfrac{\ln x}{x^{2}-1}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\ln (1-x)}{e^{x}-1}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{e^{x}-e^{-x}}{\sin x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\tan (2x) }{\ln (1+x)}\)
\(\lim\limits_{x\rightarrow 1}\dfrac{\sin ( \pi x) }{x-1}\)
\(\lim\limits_{x\rightarrow \pi }\dfrac{1+\cos x}{\sin (2x) }\)
\(\lim\limits_{x\rightarrow \infty }\dfrac{x^{2}}{e^{x}}\)
\(\lim\limits_{x\rightarrow \infty } \dfrac{e^{x}}{x^{4}}\)
\(\lim\limits_{x\rightarrow \infty }\dfrac{\ln x}{e^{x}}\)
\(\lim\limits_{x\rightarrow \infty }\dfrac{x+\ln x}{x\ln x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{e^{x}-1-\!\sin x}{1-\cos x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{e^{x}-e^{-x}-2\;\sin\;x}{3x^{3}}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\sin x-x}{x^{3}}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{x^{3}}{\cos x-1}\)
In Problems 43–58, identify each expression as an indeterminate form of the type \(0\cdot \infty ,\) \(\infty -\infty ,\) \(0^{0},\) \(1^{\infty}, \) or \(\infty ^{0}.\) Then find the limit.
\(\lim\limits_{x\rightarrow 0^{+}}(x^{2}\;\ln\;x)\)
\(\lim\limits_{x\rightarrow \infty }(xe^{-x})\)
\(\lim\limits_{x\rightarrow \infty} [x(e^{1/x}-1)]\)
\(\lim\limits_{x\rightarrow \pi /2} [ (1-\!\sin x)\tan x]\)
\(\lim\limits_{x\rightarrow \pi /2}(\sec x-\tan x)\)
\(\lim\limits_{x\rightarrow 0}\left( \cot x-\dfrac{1}{x}\right)\)
\(\lim\limits_{x\rightarrow 1}\left( \dfrac{1}{\ln x}-\dfrac{x}{\ln x}\right)\)
\(\lim\limits_{x\rightarrow 0}\left( \dfrac{1}{x}-\dfrac{1}{e^{x}-1}\right) \)
\(\lim\limits_{x\rightarrow 0^{+}}(2x)^{3x}\)
\(\lim\limits_{x\rightarrow 0^{+}}x^{x^{2}}\)
\(\lim\limits_{x\rightarrow \infty }( x+1)^{e^{-x}}\)
\(\lim\limits_{x\rightarrow \infty }(1+x^{2})^{1/x}\)
\(\lim\limits_{x\rightarrow 0^{+}}(\csc x)^{\sin x}\)
\(\lim\limits_{x\rightarrow \infty }x^{1/x}\)
\(\lim\limits_{x\rightarrow \pi /2^{-}}(\sin x)^{\tan x}\)
\(\lim\limits_{x\rightarrow 0}(\cos x)^{1/x}\)
In Problems 59–90, find each limit.
\(\lim\limits_{x\rightarrow 0^{+}}\dfrac{\cot x}{\cot (2x) }\)
\(\lim\limits_{x\rightarrow \,\infty }\dfrac{\ln (\ln x)}{\ln x}\)
\(\lim\limits_{x\rightarrow 1/2^{-}}\dfrac{\ln (1-2x)}{\tan ( \pi x) }\)
\(\lim\limits_{x\rightarrow 1^{-}}\dfrac{\ln (1-x)}{\cot ( \pi x) } \)
\(\lim\limits_{x\rightarrow \infty }\dfrac{x^{4}+x^{3}}{e^{x}+1}\)
\(\lim\limits_{x\rightarrow \infty }\dfrac{x^{2}+x-1}{e^{x}+ e^{-x}}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{xe^{4x}-x}{1-\cos (2x) }\)
\(\lim\limits_{x\rightarrow 0}\dfrac{x\tan x}{1-\cos x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\tan ^{-1}x}{x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\tan ^{-1}x}{\sin ^{-1}x}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\cos x-1}{\cos (2x) -1}\)
\(\lim\limits_{x\rightarrow 0}\dfrac{\tan x-\!\sin x}{x^{3}}\)
\(\lim\limits_{x\rightarrow 0^{+}}(x^{1/2} \ \ln x)\)
\(\lim\limits_{x\rightarrow \infty } [ (x-1)e^{-x^{2}}]\)
\(\lim\limits_{x\rightarrow \pi /2} [ \tan x \ \ln (\sin x) ] \)
\(\lim\limits_{x\rightarrow 0^{+}}[ \sin x \ \ln (\sin x)] \)
\(\lim\limits_{x\rightarrow 0}\ [ \csc x \ \ln (x+1)] \)
\(\lim\limits_{x\rightarrow \pi /4}[(1-\tan x) \ \sec (2x) ]\)
\(\lim\limits_{x\rightarrow a}\left[ (a^{2}-x^{2}) \ \tan \left( \dfrac{\pi x}{2a}\right) \right] \)
\(\lim\limits_{x\rightarrow 1^{+}}\,\left[ (1-x)\tan \!\left(\!\dfrac{1}{2}\pi x\!\right)\! \right]\)
\(\lim\limits_{x\rightarrow 1}\left( \dfrac{1}{\ln x}-\dfrac{1}{x-1}\right)\)
\(\lim\limits_{x\rightarrow 1}\left(\! \dfrac{x}{x-1}-\dfrac{1}{\ln x}\! \right)\)
\(\lim\limits_{x\rightarrow \pi /2}\left( x\;\tan\;x-\dfrac{\pi }{2}\sec x\right)\)
\(\lim\limits_{x\rightarrow \pi }(\cot\;x-x\;\csc\;x) \)
\(\lim\limits_{x\rightarrow 1^{-}}(1-x)^{\tan\;( \pi x) }\)
\(\lim\limits_{x\rightarrow 0^{+}}x^{\sqrt{\scriptstyle x}}\)
\(\lim\limits_{x\rightarrow 0}\left( \dfrac{\sin\;x}{x}\right) ^{\!\!1/x}\)
\(\lim\limits_{x\rightarrow \infty }\left(\! 1+\dfrac{5}{x}+\dfrac{3}{x^{2}}\!\right) ^{\!\!x}\)
\(\lim\limits_{x\rightarrow ( \pi /2) ^{-}}( \tan x) ^{\cos x}\)
\(\lim\limits_{x\rightarrow 0^{+}}( x^{2}+x) ^{-\ln x}\)
\(\lim\limits_{x\rightarrow 0}( \cosh x) ^{e^{x}}\)
\(\lim\limits_{x\rightarrow 0^{+}}(\sinh x) ^{x}\)
Applications and Extensions
Wolf Population In 2002 there were \(65\) wolves in Wyoming outside of Yellowstone National Park, and in 2010 there were \(247\) wolves. Suppose the population \(w\) of wolves in the region at time \(t\) follows the logistic growth curve \[ w=w(t)=\dfrac{Ke^{rt}}{\dfrac{K}{40}+e^{rt}-1} \]
where \(K=366\), \(r=0.283\), and \(t=0\) represents the population in the year 2000.
Skydiving The downward velocity \(v\) of a skydiver with nonlinear air resistance can be modeled by \[ v=v(t) =-A+RA\frac{e^{Bt+C}-1}{e^{Bt+C}+1} \]
where \(t\) is the time in seconds, and \(A,B,C,\) and \(R\) are positive constants with \(R>1\).
307
Electricity The equation governing the amount of current \(I\) (in amperes) in a simple RL circuit consisting of a resistance \(R\) (in ohms), an inductance \(L\) (in henrys), and an electromotive force \(E\) (in volts) is \(\ I=\dfrac{E}{R}( 1-e^{-Rt/L}) \).
Find \(\lim\limits_{x\rightarrow 0}\dfrac{a^{x}-b^{x}}{x},\) where \(a\neq 1\) and \(b\neq 1\) are positive real numbers.
Show that \(\lim\limits_{x\,\rightarrow \,\infty } \frac{\ln x}{x^{n}}=0\), for \(n \ge 1\) an integer.
Show that \(\lim\limits_{x\rightarrow \,\infty } \frac{x^{n}}{e^{x}}=0\) for \(n \ge 1\) an integer.
Show that \(\lim\limits_{x\rightarrow 0^{+}}(\cos\;x+2\;\sin x)^{\cot\;x}=e^{2}\).
Find \(\lim\limits_{x\rightarrow \,\infty } \dfrac{P(x)}{e^{x}}\), where \(P\) is a polynomial function.
Find \(\lim\limits_{x\rightarrow \infty }\left[ \ln (x+1)-\ln (x-1)\right] .\)
Show that \(\lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{-1/x^{2}}}{x}=0\). Hint: Write \(\dfrac{e^{-1/x^{2}}}{x}=\dfrac{\dfrac{1}{x}}{e^{1/x^{2}}}.\)
If \(n\) is an integer, show that \(\lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{-1/x^{2}}}{x^{n}}=0\).
Show that \(\lim\limits_{x\rightarrow \infty }\sqrt[x]{x}=1.\)
Show that \(\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{a}{x}\right) ^{\!\!x}=e^{a},\) \(a\) any real number.
Show that \(\lim\limits_{x\rightarrow \infty }\left( \dfrac{x+a}{x-a}\right) ^{\!\!x}= e^{2a}, a\ne 0\).
If \(a,b\neq 0\) and \(c>0\) are real numbers, show that \[ \lim\limits_{x\rightarrow c}\dfrac{x^{a}-c^{a}}{x^{b}-c^{b}}=\dfrac{a}{b} c^{a-b}. \]
Prove L’Hôpital’s rule when \(\dfrac{f(x)}{g(x) }\) is an indeterminate form at \(-\infty \) of the type \(\dfrac{0}{0}\).
Challenge Problems
Explain why L’Hôpital’s Rule does not apply to \(\lim\limits_{x\rightarrow 0}\dfrac{x^{2}\sin \dfrac{1}{x}}{\sin x}.\)
Find each limit:
Find constants \(A,\) \(B\), \(C\), and \(D\) so that \[ \lim\limits_{x\rightarrow 0}\dfrac{\sin ( Ax) +Bx+Cx^{2}+Dx^{3}}{x^{5}}=\dfrac{4}{15}. \]
A function \(f\) has derivatives of all orders.
The formulas in Problem 111 can be used to approximate derivatives. Approximate \(f^\prime (2),\) \(\ f^{\prime \prime} (2)\), and \( f’’’ (2)\) from the table. The data are for \(f(x)=\ln x\). Compare the exact values with your approximations.
x | 2.0 | 2.1 | 2.2 | 2.3 | 2.4 |
\({f(x)}\) | \(0.6931\) | \(0.7419\) | \(0.7885\) | \(0.8329\) | \(0.8755\) |
Consider the function \(f( t,x) =\dfrac{x^{t+1}-1}{t+1},\) where \(x>0\) and \(t\neq -1.\)
Source: Michael W. Ecker (2012, September), Unifying Results via L’Hôpital’s Rule. Journal of the American Mathematical Association of Two Year Colleges, 4(1) pp. 9–10.