Loading [MathJax]/jax/output/CommonHTML/jax.js

7.5 Assess Your Understanding

Printed Page 506

506

Concepts and Vocabulary

  1. Multiple Choice A rational function R(x)=p(x)q(x) is proper when the degree of p is [(a) less than, (b) equal to, (c) greater than] the degree of q.

(a)

  1. True or False Every improper rational function can be written as the sum of a polynomial and a proper rational function.

True

  1. True or False Sometimes the integration of a proper rational function leads to a logarithm.

True

  1. True or False The decomposition of 7x+1(x+1)4 into partial fractions has three terms: Ax+1+B(x+1)2+C(x+1)3, where A, B, and C are real numbers.

False

Skill Building

In Problems 5–8, find each integral by first writing the integrand as the sum of a polynomial and a proper rational function.

  1. x2+1x+1dx

x22x+2ln|x+1|+C

  1. x2+4x2dx

  1. x3+3x4x2dx

x33+x2+7x+10ln|x2|+C

  1. x33x2+4x+3dx

In Problems 9–14, find each integral. (Hint: Each of the denominators contains only distinct linear factors.)

  1. dx(x2)(x+1)

13ln|x2|13ln|x+1|+C

  1. dx(x+4)(x1)

  1. xdx(x1)(x2)

ln|x1|+2ln|x2|+C

  1. 3xdx(x+2)(x4)

  1. xdx(3x2)(2x+1)

221ln|3x2|+114ln|2x+1|+C

  1. dx(2x+3)(4x1)

In Problems 15–18, find each integral. (Hint: Each of the denominators contains a repeated linear factor.)

  1. x3(x+2)(x+1)2dx

5ln|x+2|+5ln|x+1|+4x+1+C

  1. x+1x2(x2)dx

  1. x2dx(x1)2(x+1)

14ln|x+1|+34ln|x1|12(x1)+C

  1. x2+x(x+2)(x1)2dx

In Problems 19–22, find each integral. (Hint: Each of the denominators contains an irreducible quadratic factor.)

  1. dxx(x2+1)

ln|x|12ln(x2+1)+C

  1. dx(x+1)(x2+4)

  1. x2+2x+3(x+1)(x2+2x+4)dx

16ln(x2+2x+4)+23ln|x+1|+C

  1. x211x18x(x2+3x+3)dx

In Problems 23–26, find each integral. (Hint: Each of the denominators contains a repeated irreducible quadratic factor.)

  1. 2x+1(x2+16)2dx

1x2+16+1128tan1x4+x32(x2+16)+C

  1. x2+2x+3(x2+4)2dx

  1. x3dx(x2+16)3

12(x2+16)+4(x2+16)2+C

  1. x2dx(x2+4)3

In Problems 27–36, find each integral.

  1. xdxx2+2x3

14ln|x1|+34ln|x+3|+C

  1. x2x8(x+1)(x2+5x+6)dx

  1. 10x2+2x(x1)2(x2+2)dx

143ln|x1|4x173ln(x2+2)+223tan12x2+C

  1. x+4x2(x2+4)dx

  1. 7x+3x32x23xdx

ln|x|ln|x+1|+2ln|x3|+C

  1. x5+1x6x4dx

  1. x2(x2)(x1)2dx

4ln|x2|3ln|x1|+1x1+C

  1. x2+1(x+3)(x1)2dx

  1. 2x+1x31dx

ln|x1|12ln(x2+x+1)+33tan13(2x+1)3+C

  1. dxx38

In Problems 37–40, find each definite integral.

  1. 10dxx29

16ln12

  1. 42dxx225

  1. 32dx16x2

18ln21

  1. 21dx9x2

Applications and Extensions

In Problems 41–54, find each integral. (Hint: Make a substitution before using partial fraction decomposition.)

  1. cosθsin2θ+sinθ6dθ

15ln(2sinθ)15ln(sinθ+3)+C

  1. sinxcos2x2cosx8dx

  1. sinθcos3θ+cosθdθ

ln|cosθ|+12ln(cos2θ+1)+C

  1. 4cosθsin3θ+2sinθdθ

  1. ete2t+et2dt

13ln|et1|13ln(et+2)+C

  1. exe2x+ex6dx

  1. exe2x1dx

12ln|ex1|12ln(ex+1)+C

  1. dxexex

  1. dte2t+1

t12ln(e2t+1)+C

  1. dte3t+et

  1. sinxcosx(sinx1)2dx

ln|sinx1|1sinx1+C

  1. cosxsinx(cosx2)2dx

  1. cosx(sin2x+9)2dx

154tan1sinx3+118sinxsin2x+9+C

  1. sinx(cos2x+4)2dx

507

  1. Area Find the area under the graph of y=4x24 from x=3 to x=5, as shown in the figure below.

ln157

  1. Area Find the area under the graph of y=x4(x+3)2 from x=4 to x=6, as shown in the figure below.

  1. Area Find the area under the graph of y=8x3+1 from x=0 to x=2, as shown in the figure below.

4π33+43ln3

  1. Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of y=xx24 and the x-axis from x=3 to x=5 about the x -axis, as shown in the figure below.

    1. (a) Find the zeros of q(x)=x3+3x210x24.
    2. (b) Factor q.
    3. (c) Find the integral 3x7x3+3x210x24dx.

  1. (a) 4,2,3
  2. (b) (x+4)(x+2)(x3)
  3. (c) 1310ln|x+2|+235ln|x3|1914ln|x+4|+C

Challenge Problems

In Problems 60–71, simplify each integrand as follows: If the integrand involves fractional powers such as xp/q and xr/s, make the substitution x=un, where n is the least common denominator of pq and rs. Then find each integral.

  1. xdx3+x

  1. dxx+2

2x4ln(x+2)+C

  1. dxx3x

  1. xdx3x1

35x5/3+34x4/3+32x2/3+x+3x1/3+3ln|x1/31|+C

  1. dxx+3x

  1. dx3x3x

23x1/2+13x1/3+29x1/6+227ln|3x1/61|+C

  1. dx32+3x

  1. dx41+2x

23(2x+1)3/4+C

  1. xdx(1+x)3/4

  1. dx(1+x)2/3

3(1+x)1/3+C

  1. 3x+13x1dx

  1. dxx(1+3x)2

3x1/6x1/3+1+3tan1x1/6+C

Weierstrass SubstitutionIn Problems 72–87, use the following substitution, called a Weierstrass substitution. If an integrand is a rational expression of sinx or cosx or both, the substitution z=tanx2π2<x2<π2

or equivalently, sinx=2z1+z2cosx=1z21+z2dx=2dz1+z2

will transform the integrand into a rational function of z.

  1. dx1sinx

  1. dx1+sinx

21+tanx2+C

  1. dx1cosx

  1. dx3+2cosx

255tan1(55tanx2)+C

  1. 2dxsinx+cosx

  1. dx1sinx+cosx

ln|1tanx2|+C

  1. sinx3+cosxdx

  1. dxtanx1

12ln|tan2x2+2tanx21|12ln(tan2x2+1)x2+C

  1. dxtanxsinx

  1. secxtanx2dx

55ln|tanx252+12|52ln|tanx2+52+12|+C

  1. cotx1+sinxdx

  1. secx1+sinxdx

12ln|tanx21|+12ln|tanx2+1|+1tanx2+11(tanx2+1)2+C

  1. π/20dxsinx+1

  1. π/3π/4cscx3+4tanxdx

13ln3313ln(21)415ln(3+1)415ln(42)+415ln(322)+415ln(333)

  1. π/20cosx2cosxdx

  1. π/404dxtanx+1

π2+ln2

508

  1. Use a Weierstrass substitution to derive the formula cscxdx=ln1cosx1+cosx+C

  1. Show that the result obtained in Problem 88 is equivalent to cscxdx=ln|cscxcotx|+C

See the Student Solutions Manual.

  1. Since ddxtanh1x=11x2, we might expect that 32dx1x2=tanh13tanh12. Why is this incorrect? What is the correct result?

  1. Show that the two formulas below are equivalent. secxdx=ln|secx+tanx|+Csecxdx=ln|1+tanx21tanx2|+C[Hint:tanx2=sinx2cosx2=sin2(x2)sin(x2)cos(x2)=1cosxsinx.]

See the Student Solutions Manual.

  1. Use the methods of this section to find dx1+x4. (Hint: Factor 1+x4 into irreducible quadratics.)