523
Skill Building
In Problems 1–16, find each integral using the Table of Integrals found at the back of the book.
\(\int e^{2x}\cos x\,dx\)
\(\int e^{5x+1}\sin (2x+3)\,dx\)
\(\int x\sqrt{4x+3}\,dx\)
\(\int \dfrac{dx}{(x^{2}-1)^{3/2}}\)
\(\int (x+1) \sqrt{4x+5}\,dx\)
\(\int \dfrac{dx}{[(2x+3)^{2}-1] ^{3/2}}\)
\(\int \dfrac{dx}{x\sqrt{4x+6}}\)
\(\int \dfrac{dx}{x\sqrt{8+x}}\)
\(\int \dfrac{\sqrt{4x+6}}{x}\,dx\)
\(\int \dfrac{\sqrt{8+x}}{x^{2}}\,dx\)
\(\int x^{3}(\ln x)^2\,dx\)
\(\int x^{3} (\ln x)^{2}\,dx\)
\(\int \sin ^{-1}(2x)\,dx\)
\(\int \tan ^{-1}(-3x)\,dx\)
\(\int _{1}^{2}\dfrac{x^{3}}{\sqrt{3x-x^{2}}}\,dx\)
\(\int _{1}^{e}\dfrac{1}{x^{2}\sqrt{x^{2}+2}}\,dx\)
In Problems 17–32:
\(\int e^{2x}\cos x\,dx\)
\(\int x\sqrt{4x+3}\,dx\)
\(\int (x+1) \sqrt{4x+5}\,dx\)
\(\int \dfrac{dx}{x\sqrt{4x+6}}\)
\(\int \dfrac{\sqrt{4x+6}}{x}\,dx\)
\(\int x^{3}(\ln x)^2\,dx\)
\(\int \sin ^{-1}(2x)\,dx\)
\(\int _{1}^{2}\dfrac{x^{3}}{\sqrt{3x-x^{2}}}\,dx\)
In Problems 33–38, use a CAS to investigate whether each indefinite integral can be expressed using elementary functions.
\(\int \sqrt{1+x^{3}}\,dx\)
\(\int \sqrt{1+\sin x}\,dx\)
\(\int e^{-x^{2}}dx\)
\(\int \dfrac{\cos x}{x}\,dx\)
\(\int x\tan x\, dx\)
\(\int \sqrt{1+e^{x}}\,dx\)