Printed Page 9999
In Problems 1–35, find each integral.
∫dxx2+4x+20
14tan−1x+24+C
∫y+1y2+y+1dy
∫sec3ϕtanϕdϕ
13sec3ϕ+C
∫cot2θcscθdθ
∫sin3ϕdϕ
−cosϕ+13cos3ϕ+C
∫x2√4−x2dx
∫dx√(x+2)2−1
ln(x+2+√(x+2)2−1)+C
∫π/40xsin(2x)dx
∫vcsc2vdv
ln(sinx)−xcotx+C
∫sin2xcos3xdx
∫(4−x2)3/2dx
10x−x34√4−x2+6sin−1x2+C
∫3x2+1x3+2x2−3xdx
∫e2tdtet−2
et+2ln(2−et)+C
∫dy5+4y+4y2
∫xdxx4−16
116ln4−x24+x2+C
∫x3ex2dx
∫y2dy(y+1)3
4y+32(y+1)2+ln(y+1)+C
∫dxx2√x2+25
∫xsec2xdx
xtanx+ln|cosx|+C
∫dx√16+4x−2x2
∫ln(1−y)dy
(y−1)ln(1−y)−y+C
∫x3−2x−1(x2+1)2dx
∫3x2+2x3−x2dx
2x+5ln(1−x)−2lnx+C
∫dy√2+3y2
∫x2sin−1xdx
13x3sin−1x+x2+29√1−x2+C
∫√16+9x2dx
∫dxx2+2x
12lnxx+2+C
∫sin4ycos4ydy
∫w−21−w2dw
12ln(1−w)−32ln(w+1)+C
∫x√x2−4dx
∫1√xcos2√xdx
√x+12sin(2√x)+C
∫sin(π2x)sin(πx)dx
∫sinxcos(2x)dx
−16cos3x+12cosx+12sin2xcosx+C
∫10x2√4−x2dx
∫√30xdx√1+x2
1
In Problems 37 and 38, derive each formula where n>1 is an integer.
∫xntan−1xdx=xn+1n+1tan−1x−1n+1∫xn+11+x2dx
See the Student Solutions Manual.
∫xn(ax+b)1/2dx=2xn(ax+b)3/2(2n+3)a−2bn(2n+3)a∫xn−1(ax+b)1/2dx
In Problems 39–42, determine whether each improper integral converges or diverges. If it converges, find its value.
∫∞1e−√x√xdx
Converges to 2e−1≈0.736
∫10sin√x√xdx
∫10xdx√1−x2
Converges to 1
∫0−∞xexdx
Show that ∫π/20sinxcosxdx diverges.
See the Student Solutions Manual.
Show that ∫∞1√1+x1/8x3/4dx diverges.
In Problems 45 and 46, use the Comparison Test for Improper Integrals to determine whether each improper integral converges or diverges.
∫∞11+e−xxdx
Diverges
∫∞0x(1+x)3dx
If ∫x2cosxdx=f(x)−∫2xsinxdx, find f.
f(x)=x2sinx
Area and Volume
Arc Length Approximate the arc length of y=cosx from x=0 to x=π2.
Distance The velocity v (in meters per second) of a particle at time t is given in the table. Use the Trapezoidal Rule to approximate the distance traveled from t=1 to t=4.
t(s) | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
v (m/s) | 3 | 4.3 | 4.6 | 5.1 | 5.8 | 6.2 | 6.6 |
Area Find the area, if it exists, of the region bounded by the graphs of y=x−2/3, y=0, x=0, and x=1.
3
Volume Find the volume, if it exists, of the solid of revolution generated when the region bounded by the graphs of y=x−2/3, y=0, x=0, and x=1 is revolved about the x-axis.