Loading [MathJax]/jax/output/CommonHTML/jax.js

REVIEW EXERCISES

Printed Page 9999

In Problems 1–35, find each integral.

  1. dxx2+4x+20

14tan1x+24+C

  1. y+1y2+y+1dy

  1. sec3ϕtanϕdϕ

13sec3ϕ+C

  1. cot2θcscθdθ

  1. sin3ϕdϕ

cosϕ+13cos3ϕ+C

  1. x24x2dx

  1. dx(x+2)21

ln(x+2+(x+2)21)+C

  1. π/40xsin(2x)dx

  1. vcsc2vdv

ln(sinx)xcotx+C

  1. sin2xcos3xdx

  1. (4x2)3/2dx

10xx344x2+6sin1x2+C

  1. 3x2+1x3+2x23xdx

  1. e2tdtet2

et+2ln(2et)+C

  1. dy5+4y+4y2

  1. xdxx416

116ln4x24+x2+C

  1. x3ex2dx

  1. y2dy(y+1)3

4y+32(y+1)2+ln(y+1)+C

  1. dxx2x2+25

  1. xsec2xdx

xtanx+ln|cosx|+C

  1. dx16+4x2x2

  1. ln(1y)dy

(y1)ln(1y)y+C

  1. x32x1(x2+1)2dx

  1. 3x2+2x3x2dx

2x+5ln(1x)2lnx+C

  1. dy2+3y2

  1. x2sin1xdx

13x3sin1x+x2+291x2+C

  1. 16+9x2dx

  1. dxx2+2x

12lnxx+2+C

  1. sin4ycos4ydy

  1. w21w2dw

12ln(1w)32ln(w+1)+C

  1. xx24dx

  1. 1xcos2xdx

x+12sin(2x)+C

  1. sin(π2x)sin(πx)dx

  1. sinxcos(2x)dx

16cos3x+12cosx+12sin2xcosx+C

  1. 10x24x2dx

  1. 30xdx1+x2

1

    1. (a) Find cos2(2x) dxsin3(2x) using a Table of Integrals.
    2. (b) Find cos2(2x) dxsin3(2x) using a computer algebra system (CAS).
    3. (c) Verify the results from (a) and (b) are equivalent.

In Problems 37 and 38, derive each formula where n>1 is an integer.

  1. xntan1xdx=xn+1n+1tan1x1n+1xn+11+x2dx

See the Student Solutions Manual.

  1. xn(ax+b)1/2dx=2xn(ax+b)3/2(2n+3)a2bn(2n+3)axn1(ax+b)1/2dx

In Problems 39–42, determine whether each improper integral converges or diverges. If it converges, find its value.

  1. 1exxdx

Converges to 2e10.736

  1. 10sinxxdx

  1. 10xdx1x2

Converges to 1

  1. 0xexdx

  1. Show that π/20sinxcosxdx diverges.

See the Student Solutions Manual.

  1. Show that 11+x1/8x3/4dx diverges.

In Problems 45 and 46, use the Comparison Test for Improper Integrals to determine whether each improper integral converges or diverges.

  1. 11+exxdx

Diverges

  1. 0x(1+x)3dx

  1. If x2cosxdx=f(x)2xsinxdx, find f.

f(x)=x2sinx

  1. Area and Volume

    1. (a) Find the area A of the region R bounded by the graphs of y=lnx, the x-axis, and the line x=e.
    2. (b) Find the volume of the solid of revolution generated by revolving R about the x-axis.
    3. (c) Find the volume of the solid of revolution generated by revolving R about the y-axis.
  1. Arc Length Approximate the arc length of y=cosx from x=0 to x=π2.

    1. (a) using the Trapezoidal Rule with n=3.
    2. (b) using Simpson’s Rule with n=4.

  1. (a) 1.910
  2. (b) 1.910
  1. Distance The velocity v (in meters per second) of a particle at time t is given in the table. Use the Trapezoidal Rule to approximate the distance traveled from t=1 to t=4.

    t(s) 1 1.5 2 2.5 3 3.5 4
    v (m/s) 3 4.3 4.6 5.1 5.8 6.2 6.6
  1. Area Find the area, if it exists, of the region bounded by the graphs of y=x2/3, y=0, x=0, and x=1.

3

  1. Volume Find the volume, if it exists, of the solid of revolution generated when the region bounded by the graphs of y=x2/3, y=0, x=0, and x=1 is revolved about the x-axis.