Processing math: 79%

7.2 Assess Your Understanding

Printed Page 486

Concepts and Vocabulary

  1. True or False To find cos5xdx, factor out cosx and use the identity cos2x=1sin2x.

True

  1. True or False To find sin(2x)cos(3x)dx, use a product-to-sum identity.

True

Skill Building

In Problems 3–10, find each integral.

  1. cos5xdx

sin5x52sin3x3+sinx+C

  1. sin3xdx

  1. sin6xdx

516x14sin(2x)+364sin(4x)+148sin3(2x)+C

  1. cos4xdx

  1. sin2(πx)dx

x2sin(2πx)4π+C

  1. cos4(2x)dx

  1. π0cos5x dx

0

  1. π/3π/3sin3xdx

In Problems 11–18, find each integral.

  1. sin3xcos2xdx

cos5x5cos3x3+C

  1. sin4xcos3xdx

  1. sin2xcos2xdx

x8sin(4x)32+C

  1. sin4xcos2xdx

  1. sinxcos1/3xdx

34cos4/3x+C

  1. cos3xsin1/2xdx

  1. sin2(x2)cos3(x2)dx

23sin3x225sin5x2+C

  1. sin3(4x)cos3(4x)dx

In Problems 19–26, find each integral.

  1. tan3xsec2xdx

14tan4x+C

  1. tanxsec5xdx

  1. tan2xsec2xdx

tan3x3+C

  1. tan5xsec2xdx

  1. tan2xsec3xdx

14sec3xtanx18secxtanx18ln|secx+tanx|+C

  1. tan4xsecxdx

  1. cot3xcscxdx

cscxcsc3x3+C

  1. cot3xcsc2xdx

In Problems 27–34, find each integral.

  1. sin(3x)cosxdx

18cos(4x)14cos(2x)+C

  1. sinxcos(3x)dx

  1. cosxcos(3x)dx

18sin(4x)+14sin(2x)+C

  1. cos(2x)cosxdx

  1. sin(2x)sin(4x)dx

14sin(2x)112sin(6x)+C

  1. sin(3x)sinxdx

  1. π/20sin(2x)sinxdx

23

  1. π0cosxcos(4x)dx

In Problems 35–56, find each integral.

  1. sin2xcosxdx

sin3x3+C

  1. sin3xcosxdx

  1. sinxdxcos2x

secx+C

  1. cosxdxsin4x

  1. cos3(3x)dx

13sin(3x)19sin3(3x)+C

  1. sin5(3x)dx

  1. π0sin3xcos5xdx

0

  1. π/20sin3xcos3xdx

  1. tan3xdx

ln|cosx|+12sec2x+C

  1. cot5xdx

  1. sec6xtan3xdx

12cot2x+2ln|tanx|+12tan2x+C

  1. tan1/2xsec2xdx

  1. csc2xcot5xdx

16cot6x+C

  1. cotxcsc2xdx

487

  1. cot(2x)csc4(2x) dx

18csc4(2x)+C

  1. cot2(2x)csc3(2x)dx

  1. π/40tan4xsec3xdx

7248+ln(1+2)16

  1. π/40tan2xsecxdx

  1. sin(x2)cos(3x2)dx

14cos(2x)+12cosx+C

  1. cos(x)sin(4x)dx

  1. sin(x2)sin(3x2)dx

12sinx14sin(2x)+C

  1. cos(πx)cos(3πx)dx

Applications and Extensions

  1. Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of y=sinx and the x-axis from x=0 to x=π about the x-axis. See the figure below.

π22

  1. Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of y=cosx, y=sinx, and x=0 from x=0 to x=π4 about the x-axis.

  1. Average Value

    1. (a) Find the average value of f(x)=sinxcos4x over the interval [0,π].
    2. (b) Give a geometric interpretation to the average value.
    3. (c) Use graphing technology to graph f and the average value on the same screen.

  1. (a) 25π
  2. (b) Answers will vary.
  3. (c)
  1. Rectilinear Motion The acceleration a of an object at time t is given by a(t)=cos2tsint m/s2. At t=0, the object is at the origin and its speed is 5m/s. Find its distance from the origin at any time t.

  1. Area and Volume Let A be the area of the region in the first quadrant bounded by the graphs of y=secx, y=2sinx, and the y-axis.

    1. (a) Find A.
    2. (b) Find the volume of the solid of revolution generated by revolving the region about the x-axis.

  1. (a) ln(2+1)+22
  2. (b) 4ππ22
    1. (a) Use technology to graph the function f(x)=sinnx, 0xπ, for n=5, n=10, n=20, and n=50.
    2. (b) Find π0sinnxdx correct to three decimal places for n=5, n=10, n=20, and n=50.
    3. (c) What does (a) suggest about the shape of the graph of f(x)=sinnx, 0xπ, as n.
    4. (d) Find lim.
  1. Find \int \sin ^{4}x\,dx.

    1. (a) Using the methods of this section.
    2. (b) Using the reduction formula given in Problem 61 in Section 7.1.
    3. (c) Verify that both results are equivalent.
    4. (d) Use a CAS to find \int \sin ^{4}x~dx.

  1. (a) \dfrac{3x}{8}-\dfrac{1}{4}\sin (2x) + \dfrac{1}{32}\sin (4x) +C
  2. (b) -\dfrac{1}{4}\sin^3x\,\cos x-\dfrac{3}{8}\sin x \,\cos x + \dfrac{3}{8}x + C
  3. (c) See the Student Solutions
  4. (d) same as (a)
    1. (a) Use the substitution u=\sin x to find a function f for which \int \sin x\cos x\,dx=f(x)+C_{1}.
    2. (b) Use the substitution u=\cos x to find a function g for which \int \sin x\cos x\,dx=g(x)+C_{2}.
    3. (c) Use the trigonometric identity \sin (2x)=2\sin x\cos x to find a function h for which \int \sin x\cos x\,dx=h(x)+C_{3}.
    4. (d) Compare the functions f and g. Find a relationship between C_{1} and C_{2}.
    5. (e) Compare the functions f and h. Find a relationship between C_{1} and C_{3}.
  1. Derive a formula for \int \sin (mx) \sin (nx) \,dx,\quad m ≠ n.

\dfrac{1}{2(m-n)}\sin [(m-n)x] - \dfrac{1}{2(m+n)} \sin [(m+n)x] +C

  1. Derive a formula for \int \sin (mx) \cos (nx) \,dx,\quad m ≠ n.

  1. Derive a formula for \int \cos (mx) \cos (nx) \,dx,\quad m ≠ n.

\dfrac{1}{2(m-n)}\sin [(m-n)x] + \dfrac{1}{2(m+n)} \sin [(m+n)x] +C

Challenge Problems

  1. Use the substitution \sqrt{x}\,=\,\sin y to find \int_{0}^{1/2}\dfrac{\sqrt{x}}{\sqrt{1-x}}\,dx. \bigg(Hint: sin^{2}y\,{=}\,\dfrac{1\,{-}\,\cos (2y)}{2}.\bigg)

  1. Use an appropriate substitution to show that \int_{0}^{\pi /2}\sin ^{n}\theta \,d\theta =\,\int_{0}^{\pi /2}\cos ^{n}\theta \,d\theta .

See the Student Solutions Manual.

    1. (a) What is wrong with the following?

    2. (b) Find \int_{0}^{\pi }\cos ^{4}x~dx.