Processing math: 100%

7.3 Assess Your Understanding

Printed Page 493

Concepts and Vocabulary

  1. True or False To find a2x2dx, the substitution x=asinθ, π2θπ2, can be used.

True

  1. Multiple Choice To find x2+16dx, use the substitution x=[(a) 4sinθ, (b) tanθ, (c) 4secθ, (d) 4tanθ].

(d)

  1. Multiple Choice To find x29dx, use the substitution x=[(a) secθ, (b) 3sinθ, (c) 3secθ, (d) 3tanθ].

(c)

  1. Multiple Choice To find 254x2dx, use the substitution x=[(a) 52tanθ, (b) 52sinθ, (c) 25sinθ, (d) 25secθ].

(b)

494

Skill Building

In Problems 5–14, find each integral. Each of these integrals contains a term of the form a2x2.

  1. 4x2dx

x24x2+2sin1x2+C

  1. 16x2dx

  1. x216x2dx

x216x2+8sin1x4+C

  1. x236x2dx

  1. 4x2x2dx

1x4x2sin1x2+C

  1. 9x2x2dx

  1. x24x2dx

x(x22)44x2+2sin1x2+C

  1. x2116x2dx

  1. dx(4x2)3/2

14x4x2+C

  1. dx(1x2)3/2

In Problems 15–26, find each integral. Each of these integrals contains a term of the form x2+a2.

  1. 4+x2dx

12x4+x2+2ln|4+x2+x2|+C

  1. 1+x2dx

  1. dxx2+16

ln|x2+16+x4|+C

  1. dxx2+25

  1. 1+9x2dx

x21+9x2+16ln|1+9x2+3x|+C

  1. 9+4x2dx

  1. x24+9x2dx

118x4+9x2227ln|4+9x2+3x2|+C

  1. x2x2+16dx

  1. dxx2x2+4

x2+44x+C

  1. dxx24x2+1

  1. dx(x2+4)3/2

x4x2+4+C

  1. dx(x2+1)3/2

In Problems 27–36, find each integral. Each of these integrals contains a term of the form x2a2.

  1. x2x225dx

x2x225+252ln|x+x2255|+C

  1. x2x216dx

  1. x21xdx

x21sec1x+C

  1. x21x2dx

  1. dxx2x236

x23636x+C

  1. dxx2x29

  1. dx4x29

12ln|2x+4x293|+C

  1. dx9x24

  1. dx(x29)3/2

19xx29+C

  1. dx(25x21)3/2

In Problems 37–48, find each integral.

  1. x2dx(x29)3/2

xx29+ln|x+x293|+C

  1. x2dx(x24)3/2

  1. x2dx16+x2

x4tan1x4+C

  1. x2dx1+16x2

  1. 425x2dx

x2425x2+25sin15x2+C

  1. 916x2dx

  1. dx(425x2)3/2

x4425x2+C

  1. dx(19x2)3/2

  1. 4+25x2dx

12x4+25x2+25ln|4+25x2+5x2|+C

  1. 9+16x2dx

  1. dxx3x216

1128sec1x4+x21632x2+C

  1. dxx3x21

In Problems 49–58, find each definite integral.

  1. 101x2dx

π4

  1. 1/2014x2dx

  1. 101+x2dx

2+ln(1+2)2

  1. 20x29+x2dx

  1. 54x2x29dx

1027+9ln392ln(4+7)

  1. 21x24x21dx

  1. 20x2dx(16x2)3/2

33π6

  1. 10x2dx(25x2)3/2

  1. 30x2dx9+x2

33π4

  1. 10x225+x2dx

Applications and Extensions

  1. Area of an Ellipse Find a2x2dx and use it to find the area enclosed by the ellipse x2a2+y2b2=1.

πab

  1. Area of a Semicircle

    1. (a) Find 204x2dx by interpreting the integral as a certain area and using elementary geometry.
    2. (b) Find 204x2dx using a trigonometric substitution.
    3. (c) Find the area of the semicircle y=a2x2,axa, using integration.
  1. Average Value Find the average value of the function f(x)=194x2 over the interval [0,1].

12sin123

  1. Average Value Find the average value of the function f(x)=x24 the interval [2,7].

  1. Area Under a Graph Find the area under the graph of y=x39x2 from x=0 to x=2.

182253

  1. Area Under a Graph Find the area under the graph of y=x16x2,x0.

495

  1. Area Under a Graph Find the area under the graph of y=x2x21from x=3 to x=5.

12ln(26+5)12ln(22+3)32+56

  1. Hydrostatic Force A round window of radius 2 meters ( m) is built into the side of a large, fresh-water aquarium tank. If the center of the window is 3m below the water line, find the force due to hydrostatic pressure on the window. (Hint: The mass density of fresh water is ρ=1000kg/m3.)

  1. Area of a Lune A lune is a crescent-shaped area formed when two circles intersect.

    1. (a) Find the area of the smaller lune formed by the intersection of the two circles x2+y2=4 and x2+(y2)2=1, as shown in the figure.
    2. (b) What is the area of the larger lune?

  1. (a) 4sin1158+sin1154152
  2. (b) π4sin1158sin1154+152
  1. Area Find the area enclosed by the hyperbola x29y216=1 and the line x=6.

  1. Arc Length Find the length of the graph of the parabola y=5xx2that lies above the x-axis.

14ln(26+5)14ln(265)+5226

  1. Arc Length Find the length of the graph of y=lnx from x=33 to x=3.

  1. Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of y=1x2+4 and the x-axis from x=0 to x=1 about the x -axis. See the figure.

π40+π16tan112

  1. Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graphs of y=19x2, y=0, x=0, and x=2 about the x-axis.

In Problems 73–78, find each integral. (Hint: Begin with a substitution.)

  1. dx1(x2)2

sin1(x2)+C

  1. 4(x+2)2dx

  1. dx(x1)24

ln|x1+(x1)24|+C

  1. dx(x2)(x2)2+9

  1. ex25e2xdx

252sin1ex5+12ex25e2x+C

  1. ex4+e2xdx

In Problems 79 and 80, use integration by parts and then the methods of this section to find each integral.

  1. xsin1xdx

12x2sin1x14sin1x+14x1x2+C

  1. xcos1xdx

  1. Find x2+a2dx

    1. (a) By using a trigonometric substitution
    2. (b) By using substitution with a hyperbolic function

  1. (a) x2x2+a2+a22ln|x+x2+a2a|+C
  2. (b) x2x2+a2+a22sinh1xa+C

In Problems 82–86, use a trigonometric substitution to derive each formula. Assume a>0.

  1. dxa2x2=sin1xa+C

  1. dxa2+x2=1atan1xa+C

See the Student Solutions Manual.

  1. dxxx2a2=1asec1xa+C

  1. dxx2a2=ln|x+x2a2a|+C

See the Student Solutions Manual.

  1. dxx2+a2=ln|x+x2+a2|+C

Challenge Problems

  1. Find dx3xx2

sin12x33+C

  1. Derive the formula x2a2dx=12xx2a212a2ln|x+x2a2|+C,a>0.

  1. Find dxx2+a2, a>0, using the substitution u=sinh1xa. Express your answer in logarithmic form.

lnx+x2+a2a+C

  1. Find sec2xtan2x6tanx+8dx.